1
|
Chen W, Han Y, Xu Y, Wang T, Wang Y, Chen X, Qiu X, Li W, Li H, Fan Y, Yao Y, Zhu T. Fine particulate matter exposure and systemic inflammation: A potential mediating role of bioactive lipids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172993. [PMID: 38719056 DOI: 10.1016/j.scitotenv.2024.172993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Inflammation is a key mechanism underlying the adverse health effects of exposure to fine particulate matter (PM2.5). Bioactive lipids in the arachidonic acid (ARA) pathway are important in the regulation of inflammation and are reportedly altered by PM2.5 exposure. Ceramide-1-phosphate (C1P), a class of sphingolipids, is required to initiate ARA metabolism. We examined the role of C1P in the alteration of ARA metabolism after PM2.5 exposure and explored whether changes in the ARA pathway promoted systemic inflammation based on a panel study involving 112 older adults in Beijing, China. Ambient PM2.5 levels were continuously monitored at a fixed station from 2013 to 2015. Serum cytokine levels were measured to assess systemic inflammation. Multiple bioactive lipids in the ARA pathway and three subtypes of C1P were quantified in blood samples. Mediation analyses were performed to test the hypotheses. We observed that PM2.5 exposure was positively associated with inflammatory cytokines and the three subtypes of C1P. Mediation analyses showed that C1P significantly mediated the associations of ARA and 5, 6-dihydroxyeicosatrienoic acid (5, 6-DHET), an ARA metabolite, with PM2.5 exposure. ARA, 5, 6-DHET, and leukotriene B4 mediated systemic inflammatory response to PM2.5 exposure. For example, C1P C16:0 (a subtype of C1P) mediated a 12.9 % (95 % confidence interval: 3.7 %, 32.5 %) increase in ARA associated with 3-day moving average PM2.5 exposure, and ARA mediated a 27.1 % (7.8 %, 61.2 %) change in interleukin-8 associated with 7-day moving average PM2.5 exposure. Our study indicates that bioactive lipids in the ARA and sphingolipid metabolic pathways may mediate systemic inflammation after PM2.5 exposure.
Collapse
Affiliation(s)
- Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Xiongan, Hebei, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; China National Environmental Monitoring Centre, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
2
|
Buschard K, Josefsen K, Krogvold L, Gerling I, Dahl-Jørgensen K, Pociot F. Influence of sphingolipid enzymes on blood glucose levels, development of diabetes, and involvement of pericytes. Diabetes Metab Res Rev 2024; 40:e3792. [PMID: 38517704 DOI: 10.1002/dmrr.3792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
AIMS Sulfatide is a chaperone for insulin manufacturing in beta cells. Here we explore whether the blood glucose values normally could be associated with this sphingolipid and especially two of its building enzymes CERS2 and CERS6. Both T1D and T2D have low blood sulfatide levels, and insulin resistance on beta cells at clinical diagnosis. Furthermore, we examined islet pericytes for sulfatide, and beta-cell receptors for GLP-1, both of which are related to the insulin production. MATERIALS AND METHODS We examined mRNA levels in islets from the DiViD and nPOD studies, performed genetic association analyses, and histologically investigated pericytes in the islets for sulfatide. RESULTS Polymorphisms of the gene encoding the CERS6 enzyme responsible for synthesising dihydroceramide, a precursor to sulfatide, are associated with random blood glucose values in non-diabetic persons. This fits well with our finding of sulfatide in pericytes in the islets, which regulates the capillary blood flow in the islets of Langerhans, which is important for oxygen supply to insulin production. In the islets of newly diagnosed T1D patients, we observed low levels of GLP-1 receptors; this may explain the insulin resistance in their beta cells and their low insulin production. In T2D patients, we identified associated polymorphisms in both CERS2 and CERS6. CONCLUSIONS Here, we describe several polymorphisms in sulfatide enzymes related to blood glucose levels and HbA1c in non-diabetic individuals. Islet pericytes from such persons contain sulfatide. Furthermore, low insulin secretion in newly diagnosed T1D may be explained by beta-cell insulin resistance due to low levels of GLP-1 receptors.
Collapse
Affiliation(s)
- Karsten Buschard
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark
| | - Knud Josefsen
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ivan Gerling
- Department of Medicine, University of Tennessee, Memphis, Tennessee, USA
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Zhu Y, Xu H, Wang T, Xie Y, Liu L, He X, Liu C, Zhao Q, Song X, Zheng L, Huang W. Pro-inflammation and pro-atherosclerotic responses to short-term air pollution exposure associated with alterations in sphingolipid ceramides and neutrophil extracellular traps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122301. [PMID: 37541379 DOI: 10.1016/j.envpol.2023.122301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Air pollution has been associated with the development of atherosclerosis; however, the pathophysiological mechanisms underlying pro-atherosclerotic effects of air pollution exposure remain unclear. We conducted a prospective panel study in Beijing and recruited 152 participants with four monthly visits from September 2019 to January 2020. Linear mixed-effect models were applied to estimate the associations linking short-term air pollution exposure to biomarkers relevant to ceramide metabolism, pro-inflammation (neutrophil extracellular traps formation and systemic inflammation) and pro-atherosclerotic responses (endothelial stimulation, plaque instability, coagulation activation, and elevated blood pressure). We further explored whether ceramides and inflammatory indicators could mediate the alterations in the profiles of pro-atherosclerotic responses. We found that significant increases in levels of circulating ceramides of 9.7% (95% CIs: 0.7, 19.5) to 96.9% (95% CIs: 23.1, 214.9) were associated with interquartile range increases in moving averages of ambient air pollutant metrics, including fine particulate matter (PM2.5), black carbon, particles in size fractions of 100-560 nm, nitrogen dioxide, carbon monoxide and sulfur dioxide at prior up to 7 days. Higher air pollution levels were also associated with activated neutrophils (increases in citrullinated histone H3, neutrophil elastase, double-stranded DNA, and myeloperoxidase) and exacerbation of pro-atherosclerotic responses (e.g., increases in vascular endothelial growth factor, lipoprotein-associated phospholipase A2, matrix metalloproteinase-8, P-selectin, and blood pressure). Mediation analyses further showed that dysregulated ceramide metabolism and potentiated inflammation could mediate PM2.5-associated pro-atherosclerotic responses. Our findings extend the understanding on potential mechanisms of air pollution-associated atherosclerosis, and suggest the significance of reducing air pollution as priority in urban environments.
Collapse
Affiliation(s)
- Yutong Zhu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Xinghou He
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Changjie Liu
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University School of Basic Medical Sciences, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University School of Basic Medical Sciences, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, 100191, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
4
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
5
|
Wang J, Zeng Y, Song J, Zhu M, Zhu G, Cai H, Chen C, Jin M, Song Y. Perturbation of arachidonic acid and glycerolipid metabolism promoted particulate matter-induced inflammatory responses in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114839. [PMID: 36989558 DOI: 10.1016/j.ecoenv.2023.114839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Particulate matter (PM) has become the main risk factor for public health, being linked with an increased risk of respiratory diseases. However, the potential mechanisms underlying PM-induced lung injury have not been well elucidated. In this study, we systematically integrated the metabolomics, lipidomics, and transcriptomics data obtained from the human bronchial epithelial cells (HBECs) exposed to PM to reveal metabolic disorders in PM-induced lung injury. We identified 170 differentially expressed metabolites (82 upregulated and 88 downregulated metabolites), 218 differentially expressed lipid metabolites (125 upregulated and 93 downregulated lipid metabolites), and 1417 differentially expressed genes (643 upregulated and 774 downregulated genes). Seven key metabolites (prostaglandin E2, inosinic acid, L-arginine, L-citrulline, L-leucine, adenosine, and adenosine monophosphate), and two main lipid subclasses (triglyceride and phosphatidylcholine) were identified in PM-exposed HBECs. The amino acid metabolism, lipid metabolism, and carbohydrate metabolism were the significantly enriched pathways of identified differentially expressed genes. Then, conjoint analysis of these three omics data and further qRT-PCR validation showed that arachidonic acid metabolism, glycerolipid metabolism, and glutathione metabolism were the key metabolic pathways in PM-exposed HBECs. The knockout of AKR1C3 in arachidonic acid metabolism or GPAT3 in glycerolipid metabolism could significantly inhibit PM-induced inflammatory responses in HBECs. These results revealed the potential metabolic pathways in PM-exposed HBECs and provided a new target to protect from PM-induced airway damage.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingying Zeng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guiping Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Cai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meiling Jin
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China.
| |
Collapse
|
6
|
Wu M, Xing Q, Duan H, Qin G, Sang N. Suppression of NADPH oxidase 4 inhibits PM 2.5-induced cardiac fibrosis through ROS-P38 MAPK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155558. [PMID: 35504386 DOI: 10.1016/j.scitotenv.2022.155558] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) has been consistently linked to cardiovascular diseases, and cardiac fibrosis plays a crucial role in the occurrence and development of heart diseases. It is reported that NOX4-dependent redox signaling are responsible for TGFβ-mediated profibrotic responses. The current study was designed to explore the possible mechanisms of cardiac fibrosis by PM2.5 both in vitro and in vivo. Female C57BL/6 mice received PM2.5 (3 mg/kg b.w.) exposure with/without NOX4 inhibitor (apocynin, 25 mg/kg b.w.) or ROS scavenger (NALC, 50 mg/kg b.w.), every other day, for 4 weeks. H9C2 cells were incubated with PM2.5 (3 μg/mL) with/without 5 mM NALC, TGFβ inhibitor (SB431542, 10 μM), or siRNA-NOX4 for 24 h. The results demonstrated that PM2.5 induced evident collagen deposition and elevated expression of fibrosis biomarkers (Col1a1 & Col3a1). Significant systemic inflammatory response and cardiac oxidative stress were triggered by PM2.5. PM2.5 increased the protein expression of TGFβ1, NOX4, and P38 MAPK. Notably, the increased effects of PM2.5 could be suppressed by SB431542, siRNA-NOX4 in vitro or apocynin in vivo, and NALC. The reverse verification experiments further supported the involvement of the TGFβ/NOX4/ROS/P38 MAPK signaling pathway in the myocardial fibrosis induced by PM2.5. In summary, the current study provided evidence that PM2.5 challenge led to cardiac fibrosis through oxidative stress, systemic inflammation, and subsequent TGFβ/NOX4/ROS/P38 MAPK pathway and may offer new therapeutic targets in cardiac fibrosis.
Collapse
Affiliation(s)
- Meiqiong Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Qisong Xing
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huiling Duan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
7
|
Xu Y, Han Y, Wang Y, Gong J, Li H, Wang T, Chen X, Chen W, Fan Y, Qiu X, Wang J, Xue T, Li W, Zhu T. Ambient Air Pollution and Atherosclerosis: A Potential Mediating Role of Sphingolipids. Arterioscler Thromb Vasc Biol 2022; 42:906-918. [PMID: 35652334 DOI: 10.1161/atvbaha.122.317753] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathophysiological mechanisms of air pollution-induced atherosclerosis are incompletely understood. Sphingolipids serve as biological intermediates during atherosclerosis development by facilitating production of proatherogenic apoB (apolipoprotein B)-containing lipoproteins. We explored whether sphingolipids mediate the proatherogenic effects of air pollution. METHODS This was a prospective panel study of 110 participants (mean age 56.5 years) followed from 2013 to 2015 in Beijing, China. Targeted lipidomic analyses were used to quantify 24 sphingolipids in 579 plasma samples. The mass concentrations of ambient particulate matter ≤2.5 μm in diameter (PM2.5) were continuously monitored by a fixed station. We evaluated the associations between sphingolipid levels and average PM2.5 concentrations 1-30 days before clinic visits using linear mixed-effects models and explored whether sphingolipids mediate PM2.5-associated changes in the levels of proatherogenic apoB-containing lipoproteins (LDL-C [low-density lipoprotein cholesterol] and non-HDL-C [nonhigh-density lipoprotein cholesterol]) using mediation analyses. RESULTS We observed significant increases in the levels of non-HDL-C and fourteen sphingolipids associated with PM2.5 exposure, from short- (14 days) to medium-term (30 days) exposure time windows. The associations exhibited near-monotonic increases and peaked in 30-day time window. Increased levels of the sphingolipids, namely, sphinganine, ceramide C24:0, sphingomyelins C16:0/C18:0/C18:1/C20:0/C22:0/C24:0, and hexosylceramides C16:0/C18:0/C20:0/C22:0/C24:0/C24:1 significantly mediated 32%, 58%, 35% to 93%, and 23% to 86%, respectively, of the positive association between 14-day PM2.5 average and the non-HDL-C level, but not the LDL-C level. Similar mediation effects (19%-91%) of the sphingolipids were also observed in 30-day time window. CONCLUSIONS Our results suggest that sphingolipids may mediate the proatherogenic effects of short- and medium-term PM2.5 exposure.
Collapse
Affiliation(s)
- Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China.,Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Junxia Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| | - Tao Xue
- School of Public Health (T.X.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health (Y.X., Y.H., Y.W., J.G., H.L., T.W., X.C., W.C., Y.F., X.Q., J.W., T.Z.), Peking University, Beijing, China
| |
Collapse
|