1
|
Hajir S, Jobst KJ, Kleywegt S, Simpson AJ, Simpson MJ. Metabolomics identified distinct molecular-level responses in Daphnia magna after exposure to phenanthrene and its oxygen and nitrogen containing analogs. CHEMOSPHERE 2025; 377:144334. [PMID: 40121761 DOI: 10.1016/j.chemosphere.2025.144334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/04/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
The prevalence of polycyclic aromatic hydrocarbons and their oxygenated and nitrogen containing analogs in freshwater ecosystems are of concern due to their reported toxicity to several aquatic species including Daphnia magna. This study explored the molecular-level responses of phenanthrene (PHEN), 9,10-phenanthrenequinone (PHQ), and phenanthridine (PN) as little is known about the impacts of these pollutants on the metabolic profile of D. magna. For this purpose, D. magna was exposed to three sub-lethal concentrations of these pollutants for 24 h. To assess molecular-level responses, 52 polar metabolites were extracted from individual adult daphnids, and analyzed using a mass spectrometry-based targeted metabolomics approach. Exposure to PN resulted in the most statistically significant changes to the metabolic profile of D. magna followed by PHQ, and then PHEN exposures. After PN exposure, the biochemical pathway analysis showed that all exposure concentrations shared 21 perturbed metabolic pathways. However, the number of disrupted metabolic pathways increased with increasing exposure concentrations for PHEN and PHQ. The results suggest that PN and PHQ exposures are more disruptive due to the presence of reactive functional groups when compared to PHEN exposure. For the tested concentration ranges, the findings indicate that exposure to PN resulted in non-monotonic disruptions across exposure concentrations. In contrast, exposure to PHEN and PHQ elicited perturbations that were concentration-dependent. Although the reported median effective concentration (EC50) for PN is higher than PHEN and PHQ, our data shows that metabolomics captures molecular-level changes that may not be detected by traditional toxicity metrics.
Collapse
Affiliation(s)
- Salwa Hajir
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., NL, St. John's, A1C 5S7, Newfoundland, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, M4V 1M2, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
2
|
Liu L, Wang F, Zhang Z, Fan B, Luo Y, Li L, Zhang Y, Yan Z, Kong Z, Francis F, Li M. Stereo-selective cardiac toxicity induced by metconazole via oxidative stress and the wnt/β-catenin signaling pathway in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124034. [PMID: 38663507 DOI: 10.1016/j.envpol.2024.124034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Metconazole (MEZ), a chiral triazole fungicide, produces enantioselective adverse effects in non-target organisms. Among MEZ's isomers, cis-MEZ displays robust antimicrobial properties. Evaluating MEZ and cis-MEZ's toxicity may mitigate fungicide usage and safeguard non-target organisms. Our study evaluated the toxicity of MEZ and its cis-isomers at concentrations of 0.02, 0.2, 2, and 4 mg L-1. We report stereoselectivity and severe cardiovascular defects in zebrafish, including pericardial oedema, decreased heart rate, increased sinus venous and bulbous arteries distances, intersegmental vessel defects, and altered cardiovascular development genes (hand2, gata4, nkx2.5, tbx5, vmhc, amhc, dll4, vegfaa, and vegfc). Further, MEZ significantly increased oxidative stress and apoptosis in zebrafish, primarily in the cardiac region. Isoquercetin, an antioxidant found in plants, partially mitigates MEZ-induced cardiac defects. Furthermore, MEZ upregulated the Wnt/β-catenin pathway genes (wnt3, β-catenin, axin2, and gsk-3β) and β-catenin protein expression. Inhibitor of Wnt Response-1 (IWR-1) rescued MEZ-induced cardiotoxicity. Our findings highlight oxidative stress, altered cardiovascular development genes, and upregulated Wnt/β-catenin signaling as contributors to cardiovascular toxicity in response to MEZ and cis-MEZ treatments. Importantly, 1R,5S-MEZ exhibited greater cardiotoxicity than 1S,5R-MEZ. Thus, our study provides a comprehensive understanding of cis-MEZ's cardiovascular toxicity in aquatic life.
Collapse
Affiliation(s)
- Lulu Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China; Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Ying Luo
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yifan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhihui Yan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Minmin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
3
|
Monteiro V, Dias da Silva D, Martins M, Guedes de Pinho P, Pinto J. Metabolomics perspectives of the ecotoxicological risks of polycyclic aromatic hydrocarbons: A scoping review. ENVIRONMENTAL RESEARCH 2024; 249:118394. [PMID: 38307181 DOI: 10.1016/j.envres.2024.118394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) represent persistent environmental pollutants ubiquitously distributed in the environment. Their presence alongside various other contaminants gives rise to intricate interactions, culminating in profound deleterious consequences. The combination effects of different PAH mixtures on biota remains a relatively unexplored domain. Recent studies have harnessed the exceptional sensitivity of metabolomic techniques to unveil the significant ecotoxicological perils of PAH pollution confronting both human populations and ecosystems. This article furnishes a comprehensive overview of current literature focused on the metabolic repercussions stemming from exposure to complex mixtures of PAHs or PAH-pollution sources using metabolomics approaches. These insights are obtained through a wide range of models, including in vitro assessments, animal studies, investigations on human subjects, botanical specimens, and soil environments. The findings underscore that PAH mixtures induce cellular stress responses and systemic effects, leading to metabolic dysregulations in amino acids, carbohydrates, lipids, and other key metabolites (e.g., organic acids, purines), with specific variations observed based on the organism and PAH compounds involved. Additionally, the ecological consequences of PAH pollutants on plant and soil microbial responses are emphasized, revealing significant changes in stress-related metabolites and nutrient cycling in soil ecosystems. The complex interplay of various PAHs and their metabolic effects on several models, as elucidated through metabolomics, highlight the urgency of further research and the need for comprehensive strategies to mitigate the risks posed by these widespread environmental pollutants.
Collapse
Affiliation(s)
- Vânia Monteiro
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Diana Dias da Silva
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Marta Martins
- MARE ‒ Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Dubiel J, Scovil A, Speers-Roesch B, Wiseman S, de Jourdan B, Philibert D. Exposure to individual polycyclic aromatic compounds impairs the cardiac performance of American lobster (Homarus americanus) larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106863. [PMID: 38422926 DOI: 10.1016/j.aquatox.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The potential for oil spills poses a threat to marine organisms, the toxicity of which has been attributed primarily to polycyclic aromatic compounds (PACs). Predictive tools such as the target lipid model (TLM) have been developed to forecast and assess these risks. The aim of the present study was to characterize the cardiotoxicity of 10 structurally diverse PACs in American lobster (Homarus americanus) larvae by assessing heart rate following a 48 h exposure in a passive dosing system, and subsequently use the TLM framework to calculate a critical target lipid body burden (CTLBB) for bradycardia. Exposure to 8 of the 10 PACs resulted in concentration-dependent bradycardia, with phenanthrene causing the greatest effect. The TLM was able to effectively characterize bradycardia in American lobsters, and the cardiotoxic CTLBB value determined in this study is among the most sensitive endpoints included in the CTLBB database. This study is one of the first to apply the TLM to a cardiac endpoint and will improve predictive models for assessing sublethal impacts of oil spills on American lobster populations.
Collapse
Affiliation(s)
- J Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - A Scovil
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - B Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - S Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - B de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - D Philibert
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada.
| |
Collapse
|
5
|
Johnson H, Dubiel J, Collins CH, Eriksson ANM, Lu Z, Doering JA, Wiseman S. Assessing the Toxicity of Benzotriazole Ultraviolet Stabilizers to Fishes: Insights into Aryl Hydrocarbon Receptor-Mediated Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:110-120. [PMID: 38112502 PMCID: PMC10785820 DOI: 10.1021/acs.est.3c06117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are chemicals used to mitigate UV-induced damage to manufactured goods. Their presence in aquatic environments and biota raises concerns, as certain BUVSs activate the aryl hydrocarbon receptor (AhR), which is linked to adverse effects in fish. However, potencies of BUVSs as AhR agonists and species sensitivities to AhR activation are poorly understood. This study evaluated the toxicity of three BUVSs using embryotoxicity assays. Zebrafish (Danio rerio) embryos exposed to BUVSs by microinjection suffered dose-dependent increases in mortality, with LD50 values of 4772, 11 608, and 56 292 ng/g-egg for UV-P, UV-9, and UV-090, respectively. The potencies and species sensitivities to AhR2 activation by BUVSs were assessed using a luciferase reporter gene assay with COS-7 cells transfected with the AhR2 of zebrafish and eight other fishes. The rank order of potency for activation of the AhR2 from all nine species was UV-P > UV-9 > UV-090. However, AhR2s among species differed in sensitivities to activation by up to 100-fold. An approximate reversed rank order of species sensitivity was observed compared to the rank order of sensitivity to 2,3,7,8-tetrachlorodibenzo[p]dioxin, the prototypical AhR agonist. Despite this, a pre-existing quantitative adverse outcome pathway linking AhR activation to embryo lethality could predict embryotoxicities of BUVSs in zebrafish.
Collapse
Affiliation(s)
- Hunter
M. Johnson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Justin Dubiel
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cameron H. Collins
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Andreas N. M. Eriksson
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer de Rimouski, Université du Québec
à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Jon A. Doering
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
- Department
of Environmental Sciences, College of the Coast and Environmental, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Steve Wiseman
- Department
of Biological Science, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
6
|
Shen J, Li L, Xu K, Wang K, Du Y, Wu T, Deng H. Fluoranthene determination based on a rapid and sensitive syringe extraction and solid-phase fluorescence technique. LUMINESCENCE 2023; 38:1938-1945. [PMID: 37591695 DOI: 10.1002/bio.4583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Abstract
A rapid and sensitive strategy was proposed for the detection of fluoranthene (FL), which is a polycyclic aromatic hydrocarbon (PAH), in water samples. In this work, syringe solid-phase extraction (SPE) combined with solid-phase fluorescence spectrometry was used to determine FL in PAHs polluted environmental samples. The fluorescence signals were directly monitored on the membrane surface after FL was enriched by syringe SPE. Under the optimal conditions, the proposed method showed a linear relationship in the concentration range 2-50 μg/L with a correlation coefficient (R2 ) of 0.998, and the limit of detection was 0.143 μg/L. The recoveries varied from 93.47% to 109.81% in the actual samples, with the relative standard deviations (n = 3) ranging from 2.06% to 6.32%. According to the results, the established method can be applied in the field of rapid detection as it is fast, simple, portable, and highly sensitive, and has strong anti-interference.
Collapse
Affiliation(s)
- Jiayan Shen
- College of Chemical and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, China
| | - Kehan Xu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Kaijun Wang
- College of Chemical and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiping Du
- College of Chemical and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ting Wu
- College of Chemical and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Huipeng Deng
- College of Chemical and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
De Oro-Carretero P, Sanz-Landaluze J. Miniaturized method for the quantification of persistent organic pollutants and their metabolites in HepG2 cells: assessment of their biotransformation. Anal Bioanal Chem 2023:10.1007/s00216-023-04781-w. [PMID: 37289209 DOI: 10.1007/s00216-023-04781-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Biotransformation can greatly influence the accumulation and, subsequently, toxicity of substances in living beings. Although traditionally these studies to quantify metabolization of a compound have been carried out with in vivo species, currently, in vitro test methods with very different cell lines are being developed for their evaluation. However, this is still a very limited field due to multiple variables of a very diverse nature. So, an increasing number of analytical chemists are working with cells or other similar biological samples of very small size. This makes it necessary to address the development of analytical methods that allow determining their concentration both inside the cells and in their exposure medium. The aim of this study is to develop a set of analytical methodologies for the quantification of polycyclic aromatic hydrocarbons, PAHs (phenanthrene, PHE), and polybrominated diphenyl ethers, PBDEs (2,2',4,4'-tetrabromodiphenyl ether, BDE-47), and their major metabolites in cells and their exposure medium. Analytical methodologies, based on miniaturized ultrasound probe-assisted extraction, gas chromatography-mass spectrometry-microelectron capture detector (GC-MS-µECD), and liquid chromatography-fluorescence detector (LC-FL) determination techniques, have been optimized and then applied to a biotransformation study in HepG2 at 48 h of exposure. Significant concentrations of the major metabolites of PHE (1-OH, 2-OH, 3-OH, 4-OH-, and 9-OH-PHE) and BDE-47 (5-MeO-, 5-OH-, and 3-OH-BDE-47) were detected and quantified inside the cells and in the exposure medium. These results provide a new method for determination and improve information on the metabolization ratios for a better knowledge of the metabolic pathways and their toxicity.
Collapse
Affiliation(s)
- Paloma De Oro-Carretero
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense S/N, 28040, Madrid, Spain.
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense S/N, 28040, Madrid, Spain
| |
Collapse
|
8
|
Donald CE, Nakken CL, Sørhus E, Perrichon P, Jørgensen KB, Bjelland HK, Stølen C, Kancherla S, Mayer P, Meier S. Alkyl-phenanthrenes in early life stage fish: differential toxicity in Atlantic haddock ( Melanogrammus aeglefinus) embryos. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:594-608. [PMID: 36727431 DOI: 10.1039/d2em00357k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tricyclic polycyclic aromatic hydrocarbons (PAHs) are believed to be the primary toxic components of crude oil. Such compounds including phenanthrene are known to have direct effects on cardiac tissue, which lead to malformations during organogenesis in early life stage fish. We tested a suite of 13 alkyl-phenanthrenes to compare uptake and developmental toxicity in early life stage haddock (Melanogrammus aeglefinus) embryos during gastrulation/organogenesis beginning at 2 days post fertilization via passive dosing. The alkyl-phenanthrenes were tested at their solubility limits, and three of them also at lower concentrations. Measured body burdens were linearly related to measured water concentrations. All compounds elicited one or more significant morphological defects or functional impairment, such as decreased length, smaller eye area, shorter jaw length, and increased incidence of body axis deformities and eye deformities. The profile of developmental toxicities appeared unrelated to the position of alkyl substitution, and gene expression of cytochrome 1 a (cyp1a) was low regardless of alkylation. Mortality and sublethal effects were observed below the expected range for baseline toxicity, thus indicating excess toxicity. Additionally, PAH concentrations that resulted in toxic effects here were far greater than when measured in whole crude oil exposures that cause toxicity. This work demonstrates that, while these phenanthrenes are toxic to early life stage fish, they cannot individually account for most of the developmental toxicity of crude oil, and that other compounds and/or mixture effects should be given more consideration.
Collapse
Affiliation(s)
| | - Charlotte L Nakken
- Institute of Marine Research, 5817 Bergen, Norway.
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Elin Sørhus
- Institute of Marine Research, 5817 Bergen, Norway.
| | - Prescilla Perrichon
- Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway
| | - Kåre B Jørgensen
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Hege K Bjelland
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Christine Stølen
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Sindhu Kancherla
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Philipp Mayer
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
9
|
Lu J, Guo Z, Li M, Dai P, He M, Kang Y, Sun B, Zhang J. The increased oxygen vacancy by morphology regulation of MnO 2 for efficient removal of PAHs in aqueous solution. CHEMOSPHERE 2023; 318:137966. [PMID: 36708785 DOI: 10.1016/j.chemosphere.2023.137966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Manganese dioxide (MnO2) is considered to have a promising future in degrading polycyclic aromatic hydrocarbons (PAHs) in aqueous phase because of its low cost and environmental friendliness. In this study, various MnO2 morphologies were prepared, and their removal performance and mechanism were evaluated using benzo(a)pyrene (B[a]P) as model molecule. Results showed that nanoflower MnO2 with higher concentration of oxygen vacancies exhibited better oxidative and easier oxygen migration properties, and thus enhanced PAHs removal by 14.28%-43.21% compared with other MnO2 samples. Additionally, the transformation rate of PAHs is correlated with their ionization potential (IP) values. Further mechanism studies showed that the degradation of B[a]P by MnO2 process was first to form a combination and then oxidized by non-radical Mn species and superoxide radical (O2-•) to produce degradation product (B[a]P-6-one and B[a]P-6,12-quinone). The specific surface area was not the main factor affecting the removal of B[a]P by MnO2 and oxidation was the main removal mechanism of degrading B[a]P by MnO2. Mn3+ and absorbed oxygen (Oabs) played an important role in the process of removing PAHs by MnO2. Additionally, synergistic effects of oxygen vacancy and Mn3+could be benefit for transforming Oabs to O2-•, leading to the efficient degradation of PAHs.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Mengting Li
- Yantai Geological Survey Center of Coastal Zone, China Geological Survey, Yantai, 264004, China
| | - Peng Dai
- Department of Civil & Environmental Engineering, South Dakota State University, South Dakota, 57007, United States
| | - Mingyu He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
10
|
Jia Q, Wang S, Yu M, Wang Q, Yan F. Two QSAR models for predicting the toxicity of chemicals towards Tetrahymena pyriformis based on topological-norm descriptors and spatial-norm descriptors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:147-161. [PMID: 36749040 DOI: 10.1080/1062936x.2023.2171478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Quantitative structure-activity relationship (QSAR) is important for safe, rapid and effective risk assessment of chemicals. In this study, two QSAR models were established with 1230 chemicals to predict toxicity towards Tetrahymena pyriformis using multiple linear regression (MLR) method. The topological(T)-QSAR model was developed by using topological-norm descriptors generated from the topological structure, and the spatial(S)-QSAR model were built with spatial-norm descriptors obtained from the three-dimensional structure of molecules and topological-norm descriptors. The r2training and r2test are 0.8304 and 0.8338 for the T-QSAR model, and 0.8485 and 0.8585 for the S-QSAR model, which means that T-QSAR model and S-QSAR model can be used to predict toxicity quickly and accurately. In addition, we also conducted validation on the developed models. Satisfying validation results and statistical parameters demonstrated that QSAR models based on the topological-norm descriptors and spatial-norm descriptors proposed in this paper could be further utilized to estimate the toxicity of chemicals towards Tetrahymena pyriformis.
Collapse
Affiliation(s)
- Q Jia
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, Tianjin, PR China
| | - S Wang
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, Tianjin, PR China
| | - M Yu
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, PR China
| | - Q Wang
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, PR China
| | - F Yan
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
11
|
Bérubé R, Garnier C, Lefebvre-Raine M, Gauthier C, Bergeron N, Triffault-Bouchet G, Langlois VS, Couture P. Early developmental toxicity of Atlantic salmon exposed to conventional and unconventional oils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114487. [PMID: 36587413 DOI: 10.1016/j.ecoenv.2022.114487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Atlantic salmon is an important species for Canadian culture and economy and its importance extends beyond Canada to Scandinavia and Western Europe. However, it is a vulnerable species facing decline due to habitat contamination and destruction. Existing and new Canadian pipeline projects pose a threat to salmonid habitat. The effects of diluted bitumen (dilbit), the main oil circulating in pipelines, are less studied than those of conventional oils, especially during the critical early embryonic developmental stage occurring in freshwater ecosystems. Therefore, this study aimed to compare the effects of water-accommodated fractions (WAF) of the Clearwater McMurray dilbit and the Lloydminster Heavy conventional oil on Atlantic salmon embryos exposed either from fertilization or from eyed stage. The dilbit contained the highest concentrations of low molecular weight (LMW) compounds (including BTEX and C6-C10), while the conventional oil contained the highest concentrations of PAHs. The Clearwater dilbit caused a higher percentage of mortality and malformations than the conventional oil at similar WAF concentrations. In addition, the embryos exposed from fertilization suffered a higher mortality rate, more developmental delays, and malformations than embryos exposed from the eyed stage, suggesting that early development is the most sensitive developmental stage to oil exposure. Gene expression and enzymatic activity of the detoxification phase I and II enzymes (CYP1A and GST) were measured. Data showed increases in both cyp1a expression and GST activity with increasing WAF concentrations, while gst expression was not affected by the exposures. Also, gene expression of proteins involved in the biotransformation of vitamin A and DNA damage repair were modified by the oil exposures. Overall, this study indicates that Atlantic salmon is mostly affected by oil exposure at the beginning of its development, during which embryos accumulate deformities that may impact their survival at later life stages.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Camille Garnier
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Molly Lefebvre-Raine
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Charles Gauthier
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Normand Bergeron
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Gaëlle Triffault-Bouchet
- CEAEQ, Ministère de l'Environnement et de la Lutte contre les changements climatiques, 2700 rue Einstein, Québec, Canada
| | - Valérie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada
| | - Patrice Couture
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 rue de la Couronne, Québec, QC, Canada.
| |
Collapse
|
12
|
Eriksson ANM, Rigaud C, Wincent E, Pakkanen H, Salonen P, Vehniäinen ER. Endogenous AhR agonist FICZ accumulates in rainbow trout (Oncorhynchus mykiss) alevins exposed to a mixture of two PAHs, retene and fluoranthene. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1382-1389. [PMID: 36219374 PMCID: PMC9652237 DOI: 10.1007/s10646-022-02593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Multiple studies have reported synergized toxicity of PAH mixtures in developing fish larvae relative to the additive effect of the components. From a toxicological perspective, multiple mechanisms are known to contribute to synergism, such as altered toxicodynamics and kinetics, as well as increased oxidative stress. An understudied contributor to synergism is the accumulation of endogenous metabolites, for example: the aryl hydrocarbon receptor 2 (AhR2) agonist and tryptophan metabolite 6-Formylindolo(3,2-b)carbazole (FICZ). Fish larvae exposed to FICZ, alongside knock-down of cytochrome p450 (cyp1a), has been reported to induced symptoms of toxicity similar to those observed following exposure to PAHs or the dioxin 2,3,7,8-tetrachlorodibenzo-p-dioxin. Here, we explored if FICZ accumulates in newly hatched rainbow trout alevins (Oncorhynchus mykiss) exposed to two PAHs with different properties: retene (potent AhR2 agonist) and fluoranthene (weak AhR2 agonist and Cyp1a inhibitor), either alone or as a binary mixture for 3 and 7 days. We found that exposure to the mixture resulted in accumulation of endogenous FICZ, synergized the blue sac disease index (BSD), and altered the body burden profiles of the PAHs, when compared to the alevins exposed to the individual components. It is thus very plausible that accumulation of endogenously derived FICZ contributed to the synergized BSD index and toxicity in exposed alevins. Accumulation of endogenously derived FICZ is a novel finding that extends our general understanding on PAHs toxicity in developing fish larvae, while at the same time highlighting why environmental risk assessment of PAHs should not be based solely results from the assessment of individual compounds.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannu Pakkanen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Pihla Salonen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|