1
|
Owens AC, Pocock MJ, Seymoure BM. Current evidence in support of insect-friendly lighting practices. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101276. [PMID: 39332620 DOI: 10.1016/j.cois.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Anthropogenic light pollution is an emerging threat to natural ecosystems with myriad effects on insects in particular. Insect conservationists are increasingly interested in mitigating this driver of insect declines via sustainable lighting practices. Current recommendations often follow the five principles for responsible outdoor lighting developed by DarkSky International, a nonprofit organization founded by astronomers. While these principles unquestionably increase star visibility, their ecological costs and benefits remain relatively unexplored. Herein, we review recent research into the effects of each principle on insect fitness broadly defined. Most studies test the efficacy of spectral tuning, followed by dimming, although both mitigation methods seem generally ineffective in practice. In contrast, both shielding and motion detectors show promise as mitigation methods but remain remarkably understudied. Nonetheless, a preponderance of evidence now demonstrates that removing unnecessary light sources from natural habitats can reverse their varied impacts on diverse insect taxa and greatly benefit insect conservation.
Collapse
Affiliation(s)
| | - Michael Jo Pocock
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire OX10 8BB, UK
| | - Brett M Seymoure
- Department of Biological Sciences, The University of Texas El Paso, El Paso, TX 79968, USA
| |
Collapse
|
2
|
Li W, Zhang D, Zou Q, Bose APH, Jordan A, McCallum ES, Bao J, Duan M. Behavioural and transgenerational effects of artificial light at night (ALAN) of varying spectral compositions in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176336. [PMID: 39299330 DOI: 10.1016/j.scitotenv.2024.176336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Artificial light at night (ALAN) can disrupt the natural behaviour, physiology, and circadian rhythms of organisms exposed to it, and therefore presents a significant and widespread ecological concern. ALAN typically comprises a wide range of wavelengths, and different wavelengths have different effects on circadian clocks. In the animals investigated thus far, short and middle wavelengths are intensely involved in synchronisation and entrainment, but we still have a poor understanding of how different wavelengths might affect behaviour when animals are exposed to ALAN, in particular whether some wavelengths are disproportionally detrimental. This experiment examined the direct and transgenerational effects of 10 different wavelength treatments of ALAN on behaviour in zebrafish (Danio rerio), a diurnally active model organism. Across a 10-day period, female zebrafish were exposed to either a monochromatic wavelength, white light ALAN, or to a control treatment, and the individual impacts of each treatment on locomotion and anxiety-like behaviours were examined both for solitary fish and fish in groups. We found the strongest impact at short wavelengths (365 to 470 nm), with individuals and groups of zebrafish showing more anxiety-like behaviour after fewer nights of ALAN exposure relative to the other wavelengths. Furthermore, F1 offspring born from ALAN-exposed mothers displayed less frequent movement and shorter movement distances despite never being exposed to ALAN themselves, regardless of the spectral treatment. Our results highlight both the specific and broad-spectrum potential for ALAN to cause disruption to locomotion in adult zebrafish and their offspring.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dongxu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingqing Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Aneesh P H Bose
- Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, Västerbotten 90736, Sweden
| | - Alex Jordan
- Behavioural Evolution Research Group, Max Planck Institute of Animal Behaviour, Buecklestr 5a, 78464 Konstanz, Germany
| | - Erin S McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, Västerbotten 90736, Sweden
| | - Jianghui Bao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Yadav P, Borges RM. Oviposition decisions under environment-induced physiological stress in parasitoids. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101240. [PMID: 39084490 DOI: 10.1016/j.cois.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
Parasitoids constantly evaluate their environment to optimise oviposition host utilisation based on their life history parameters and host characteristics, including density. Any factors impairing chemosensory perception, learning and memory of oviposition decisions negatively impact fitness. In the Anthropocene, stressors, for example, elevated temperatures, Wolbachia infection (likely modulated by temperature), pesticides, light pollution and water deficits in plants that provide resources for parasitoid hosts, impact parasitoid oviposition. Such physiological stressors often induce superparasitism since parasitoids are unable to remember prior oviposition on hosts or cause impaired offspring sex ratio. While the effect of these stressors on parasitoid oviposition has been examined individually, their combined effects remain unexplored. Since parasitoids are exposed to these stressors simultaneously, future work must examine their cumulative impact.
Collapse
Affiliation(s)
| | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Sciences, Bengaluru 560012, India.
| |
Collapse
|
4
|
Cox DTC, Gaston KJ. Ecosystem functioning across the diel cycle in the Anthropocene. Trends Ecol Evol 2024; 39:31-40. [PMID: 37723017 DOI: 10.1016/j.tree.2023.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Given the marked differences in environmental conditions and active biota between daytime and nighttime, it is almost inevitable that ecosystem functioning will also differ. However, understanding of these differences has been hampered due to the challenges of conducting research at night. At the same time, many anthropogenic pressures are most forcefully exerted or have greatest effect during either daytime (e.g., high temperatures, disturbance) or nighttime (e.g., artificial lighting, nights warming faster than days). Here, we explore current understanding of diel (daily) variation in five key ecosystem functions and when during the diel cycle they primarily occur [predation (unclear), herbivory (nighttime), pollination (daytime), seed dispersal (unclear), carbon assimilation (daytime)] and how diel asymmetry in anthropogenic pressures impacts these functions.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
5
|
Hirt MR, Evans DM, Miller CR, Ryser R. Light pollution in complex ecological systems. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220351. [PMID: 37899008 PMCID: PMC10613538 DOI: 10.1098/rstb.2022.0351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Light pollution has emerged as a burgeoning area of scientific interest, receiving increasing attention in recent years. The resulting body of literature has revealed a diverse array of species-specific and context-dependent responses to artificial light at night (ALAN). Because predicting and generalizing community-level effects is difficult, our current comprehension of the ecological impacts of light pollution on complex ecological systems remains notably limited. It is critical to better understand ALAN's effects at higher levels of ecological organization in order to comprehend and mitigate the repercussions of ALAN on ecosystem functioning and stability amidst ongoing global change. This theme issue seeks to explore the effects of light pollution on complex ecological systems, by bridging various realms and scaling up from individual processes and functions to communities and networks. Through this integrated approach, this collection aims to shed light on the intricate interplay between light pollution, ecological dynamics and humans in a world increasingly impacted by anthropogenic lighting. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 4LB, UK
| | - Colleen R. Miller
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Cornell Laboratory of Ornithology, Ithaca, NY, 14850, USA
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| |
Collapse
|
6
|
Spoelstra K, Teurlincx S, Courbois M, Hopkins ZM, Visser ME, Jones TM, Hopkins GR. Long-term exposure to experimental light affects the ground-dwelling invertebrate community, independent of light spectra. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220364. [PMID: 37899017 PMCID: PMC10613541 DOI: 10.1098/rstb.2022.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/30/2023] [Indexed: 10/31/2023] Open
Abstract
Our planet endures a progressive increase in artificial light at night (ALAN), which affects virtually all species, and thereby biodiversity. Mitigation strategies include reducing its intensity and duration, and the adjustment of light spectrum using modern light emitting diode (LED) light sources. Here, we studied ground-dwelling invertebrate (predominantly insects, arachnids, molluscs, millipedes, woodlice and worms) diversity and community composition after 3 or 4 years of continued nightly exposure (every night from sunset to sunrise) to experimental ALAN with three different spectra (white-, and green- and red-dominated light), as well as for a dark control, in natural forest-edge habitat. Diversity of pitfall-trapped ground-dwelling invertebrates, and the local contribution to beta diversity, did not differ between the dark control and illuminated sites, or between the different spectra. The invertebrate community composition, however, was significantly affected by the presence of light. Keeping lights off during single nights did show an immediate effect on the composition of trapped invertebrates compared to illuminated nights. These effects of light on species composition may impact ecosystems by cascading effects across the food web. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Sven Teurlincx
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Matthijs Courbois
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Zoë M. Hopkins
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Marcel E. Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - Therésa M. Jones
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Gareth R. Hopkins
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
- Department of Biology, Western Oregon University, 345 Monmouth Avenue North, Monmouth, OR 97361, USA
| |
Collapse
|
7
|
Sanders D, Hirt MR, Brose U, Evans DM, Gaston KJ, Gauzens B, Ryser R. How artificial light at night may rewire ecological networks: concepts and models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220368. [PMID: 37899020 PMCID: PMC10613535 DOI: 10.1098/rstb.2022.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
8
|
Parkinson E, Tiegs SD. Spectral composition of light-emitting diodes impacts aquatic and terrestrial invertebrate communities with potential implications for cross-ecosystem subsidies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220361. [PMID: 37899013 PMCID: PMC10613537 DOI: 10.1098/rstb.2022.0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/19/2023] [Indexed: 10/31/2023] Open
Abstract
Resource exchanges in the form of invertebrate fluxes are a key component of aquatic-terrestrial habitat coupling, but this interface is susceptible to human activities, including the imposition of artificial light at night. To better understand the effects of spectral composition of light-emitting diodes (LEDs)-a technology that is rapidly supplanting other lighting types-on emergent aquatic insects and terrestrial insects, we experimentally added LED fixtures that emit different light spectra to the littoral zone and adjacent riparian habitat of a pond. We installed four replicate LED treatments of different wavelengths (410, 530 and 630 nm), neutral white (4000 k) and a dark control, and sampled invertebrates in both terrestrial and over-water littoral traps. Invertebrate communities differed among light treatments and between habitats, as did total insect biomass and mean individual insect size. Proportional allochthonous biomass was greater in the riparian habitat and among some light treatments, demonstrating an asymmetrical effect of differently coloured LEDs on aquatic-terrestrial resource exchanges. Overall, our findings demonstrate that variation in wavelength from LEDs may impact the flux of resources between systems, as well as the communities of insects that are attracted to particular spectra of LED lighting, with probable implications for consumers. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Elizabeth Parkinson
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Scott D. Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
9
|
Jägerbrand AK, Spoelstra K. Effects of anthropogenic light on species and ecosystems. Science 2023; 380:1125-1130. [PMID: 37319223 DOI: 10.1126/science.adg3173] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic light is ubiquitous in areas where humans are present and is showing a progressive increase worldwide. This has far-reaching consequences for most species and their ecosystems. The effects of anthropogenic light on natural ecosystems are highly variable and complex. Many species suffer from adverse effects and often respond in a highly specific manner. Ostensibly surveyable effects such as attraction and deterrence become complicated because these can depend on the type of behavior and specific locations. Here, we considered how solutions and new technologies could reduce the adverse effects of anthropogenic light. A simple solution to reducing and mitigating the ecological effects of anthropogenic light seems unattainable, because frugal lighting practices and turning off lights may be necessary to eliminate them.
Collapse
Affiliation(s)
- Annika K Jägerbrand
- Department of Electrical Engineering, Mathematics and Science, Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB Wageningen, Netherlands
| |
Collapse
|
10
|
Jiang XL, Ren Z, Hai XX, Zhang L, Wang ZG, Lyu F. Exposure to artificial light at night mediates the locomotion activity and oviposition capacity of Dastarcus helophoroides (Fairmaire). Front Physiol 2023; 14:1063601. [PMID: 36846342 PMCID: PMC9947650 DOI: 10.3389/fphys.2023.1063601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Light entrains the endogenous circadian clocks of organisms to synchronize their behavioral and physiological rhythms with the natural photoperiod. The presence of artificial light at night disrupts these photoperiodic cues and is currently considered to be a major threat to key fitness-related behaviors, including sleep disruption and physiological stress. Research on the ecological influence of forest pest and their natural enemies is lacking. The wood-boring insects significantly damage forest and urban forest ecosystem functions. The parasitic beetles, Dastarcus helophoroides is an important natural enemy of wood-boring insects, especially those in the Cerambycidae family. However, the effect of artificial light at night on the locomotor rhythms and oviposition capacity of D. helophoroides has received little attention. To address this gap, diel changes in the locomotor activity and number of eggs laid by female D. helophoroides was analyzed under different light-dark (LD) cycles and temperatures. The results showed that the 24-h rhythmic of locomotor activity in these beetles was elevated in darkness and reduced under illumination, indicating that they are nocturnal insects. This activity has two major peaks, the evening (1-8 h after lights off) and morning (3.5-12.5 h after lights off) components, reflecting that light mediate regular changes in locomotor activity. Moreover, the circadian rhythms and active percentage were influenced by the illumination duration and temperature, especially constant light and 40°C. Females laid more eggs under the 16 L: 8 D cycles at 30°C than under the other combinations of photoperiod (including constant light and darkness) and temperature. Finally, the potential influence of exposure to four ecologically relevant intensities of artificial light at night (0, 1, 10 or 100 lx) on oviposition capacity was studied. The results showed that lifetime exposure to bright artificial light (1-100 lx) at night decreased the number of eggs laid relative to those laid with no lighting at night. These results demonstrate that chronic exposure to bright artificial light at night may influence the locomotor activity and oviposition capacity of this parasitic beetle.
Collapse
Affiliation(s)
- Xiang-lan Jiang
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| | - Zhe Ren
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| | - Xiao-xia Hai
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| | - Ling Zhang
- Chengde Academy of Agriculture and Forestry Sciences, Chengde, Hebei, China
| | - Zhi-gang Wang
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China
| | - Fei Lyu
- Key Laboratories for Germplasm Resources of Forest Trees and Forest Protection of Hebei Province, College of Forestry, Agricultural University of Hebei, Baoding, Hebei, China,*Correspondence: Fei Lyu,
| |
Collapse
|
11
|
Wang FF, Wang MH, Zhang MK, Qin P, Cuthbertson AGS, Lei CL, Qiu BL, Yu L, Sang W. Blue light stimulates light stress and phototactic behavior when received in the brain of Diaphorina citri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114519. [PMID: 36634478 DOI: 10.1016/j.ecoenv.2023.114519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Blue light with a wavelength of 400-470 nm is the composition of the visible light. However, in recent years, blue light contributed the most significance to light pollution due to the artificial light at night. Previously, we have demonstrated that the Asian citrus psyllid (ACP), Diaphorina citri, an important pest in citrus production, has significant positive phototaxis with a light-emitting diode light of 400 nm. In this study, ACP with positive phototactic behavior to 400 nm light (PH) and non-phototactic behavior to 400 nm light (NP) were collected, individually. Transcriptome dynamics of head tissues of PH and NP groups were captured by using RNA-sequencing technology, respectively. Forty-three to 46 million clean reads with high-quality values were obtained, and 1773 differential expressed genes (DEGs) were detected. Compared with the NP group, there were 841 up-regulated DEGs and 932 down-regulated DEGs in the PH group. Eight pathways were significantly enriched in the PH group in the KEGG database, while 43 up-regulated pathways and 25 down-regulated pathways were significantly enriched in the PH group in the GO database. The DGE approach was reliable validated by real time quantitative PCR. Results indicated that the blue light acted as an abiotic stress causing physiological and biochemical responses such as oxidative stress, protein denaturation, inflammation and tumor development in ACPs. Additionally, the light was absorbed by photoreceptors of ACPs, and converted into electrical signal to regulate neuromodulation. This study provides basic information for understanding the molecular mechanisms of ACP in response to blue light and provides a reference for further studies to elucidate phototactic behavior.
Collapse
Affiliation(s)
- Fei-Feng Wang
- South China Agricultural University, Guangzhou 510640, China
| | - Ming-Hui Wang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Meng-Ke Zhang
- South China Agricultural University, Guangzhou 510640, China
| | - Peng Qin
- South China Agricultural University, Guangzhou 510640, China
| | | | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao-Li Qiu
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Lin Yu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| | - Wen Sang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
12
|
Kehoe R, Sanders D, van Veen FJ. Towards a mechanistic understanding of the effects of artificial light at night on insect populations and communities. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100950. [PMID: 35868610 DOI: 10.1016/j.cois.2022.100950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Artificial light at night (ALAN) is markedly changing the night-time environment with many studies showing single-species responses. Exposure to ALAN can lead to population declines that should have consequences for the functioning and stability of ecological communities. Here, we summarise current knowledge on how insect communities are affected by ALAN. Based on reported effects of ALAN on the interactions between species, and what has been demonstrated for similar effects in other contexts, we argue that direct effects of ALAN on a few species can potentially propagate through the network of species interactions to have widespread effects in ecological communities. This can lead to a shift in community structure and simplified communities. We discuss the diversity of ALAN as a pressure and highlight major gaps in the research field. In particular, we conclude that landscape level impacts on populations and communities are understudied.
Collapse
Affiliation(s)
- Rachel Kehoe
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Frank Jf van Veen
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| |
Collapse
|