1
|
Zhang X, Meng L, Zang J, Sun T, Fan G. Surface reconstruction of natural wood-derived, monolithic chainmail catalyst enables robust water purification. ENVIRONMENTAL RESEARCH 2025; 282:122104. [PMID: 40490207 DOI: 10.1016/j.envres.2025.122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/27/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Chainmail catalysts, characterized by carbon layer-encapsulated active sites embedded within hierarchically porous carbon matrices, represent an optimal strategy for enhancing catalytic stability in the activation of peroxymonosulfate (PMS) for the degradation of organic pollutants. However, these powder catalysts face challenges such as agglomeration, sluggish diffusion kinetics, and difficulties in separation. In this study, we transformed low-cost natural wood into a monolithic, self-supported chainmail catalyst, Co@CW, by embedding Co nanoparticles within hierarchically porous carbonized wood. The Co@CW-800 chainmail catalyst effectively activated PMS through a dominant free radical pathway, achieving a high tetracycline (TC) removal efficiency of 94.5% within 30 minutes. Furthermore, Co@CW-800 exhibited good adaptability under various conditions and maintained its high degradation efficiency over multiple cycles due to the surface reconstruction effect. The chainmail catalyst Co@CW-800 activated PMS to degrade TC via three primary pathways and generated twelve intermediate products. Moreover, toxicity evaluations indicated a reduction in toxicity after TC degradation by the Co@CW-800/PMS system. This study presents an efficient, stable, and recyclable self-supported chainmail catalyst system, establishing a foundation for water pollution control and advancing environmentally friendly advanced oxidation technologies.
Collapse
Affiliation(s)
- Xueqin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Lanyi Meng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Jiaying Zang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ting Sun
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
2
|
Wang D, Chen X, Zhang J, Xu J, Kong X, Ye J, Zhang R, Fan H, Liu L, Zhan X, Qin Y, Xu H, Zhu Y, Cai D. Alkaline-thermal synergistic activation of persulfate for sawdust hour-level humification to prepare fulvic-like-acid fertilizer. BIORESOURCE TECHNOLOGY 2025; 426:132388. [PMID: 40074092 DOI: 10.1016/j.biortech.2025.132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025]
Abstract
Sawdust is a by-product of wood processing and it was rapidly humified with K2S2O8 under alkaline-thermal synergistic activation to produce a fulvic-like-acid (FLA) organic fertilizer (SFOF) in this study. The optimum conditions were K2S2O8: KOH mass ratio of 1:2 and 150°C, meanwhile FLA yield could reach 180.3 mg/g in 2 h. The carboxylation, Maillard reaction, and aromatization processes occurred during sawdust humification. And then, SFOF was mixed with attapulgite and modified starch binder to get an organic fertilizer (SAM), and coated with amino silicone oil (ASO) to create a slow-release granule (SAM@ASO). The release mechanism of FLA from SAM@ASO was consistent with Ritger-Peppas release kinetics. SAM@ASO, with high biosafety, could promote water spinach growth and remediate acidic soil (pH from 4.9 to 6.3). This method offers a promising approach for sawdust utilization and a novel FLA-based organic fertilizer for acidic soil remediation.
Collapse
Affiliation(s)
- Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Xinyan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jing Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jia Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xianghai Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Rongjun Zhang
- Weifang Shangchang Ecological Agriculture Technology Co., LTD, Weifang, People's Republic of China
| | - Huiqun Fan
- Shanghai Songjiang District Environmental Monitoring Station, Shanghai 201620, People's Republic of China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, People's Republic of China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China; National Circular Economy Engineering Laboratory, Shanghai 201620, People's Republic of China.
| |
Collapse
|
3
|
Khalili M, Behnami A, Zoroufchi Benis K, Jalal Ali H, Aghayani E, Abdolahnejad A, Pourakbar M, Dehghanzadeh R. Systematic review of various activation methods of sulfate radical precursor for the degradation of PFAS in aquatic environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125409. [PMID: 40273780 DOI: 10.1016/j.jenvman.2025.125409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
PER: and polyfluoroalkyl substance (PFAS), widely used in industrial production, pose significant environmental and health risks due to their stability and persistence. Recent research has highlighted the potential of sulfate radicals for degrading PFAS through the activation of precursors like peroxymonosulfate (PMS) and persulfate (PS) in oxidation processes. The present study systematically reviews various activation methods and corresponding efficiencies in removing PFAS in thermal, ultrasonic, photochemical, catalytic, and electrochemical processes. The review also explores the impact of pH, temperature, precursor concentration, and co-contaminants, on PFAS degradation efficiency. Additionally, it investigates the degradation mechanisms, including defluorination and carbon-carbon bond cleavage, providing insights into the pathways of PFAS breakdown. Despite the promising results, challenges remain on the potential formation of toxic by-products and the energy demands of activation methods. Addressing these issues may involve developing more efficient catalysts, optimizing conditions, and combining treatment processes. This review offers valuable insights for researchers and practitioners, contributing to the advancement of PFAS remediation strategies and ultimately protecting human health and the environment from these persistent pollutants.
Collapse
Affiliation(s)
- Mahsa Khalili
- Faculty of Chemical Engineering, Sahand University of Technology, Sahand, Tabriz, Iran
| | - Ali Behnami
- Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Hazhar Jalal Ali
- Halabja Technical College, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Ehsan Aghayani
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Ali Abdolahnejad
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Dehghanzadeh
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Chen H, Yin R, Zhu M. How to enhance persulfate processes by external-field effects: From fundamentals to applications. WATER RESEARCH 2025; 274:123026. [PMID: 39740330 DOI: 10.1016/j.watres.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) are considered as efficient techniques for the degradation of contaminants, whereas the effective activation methods for reactive oxygen species (ROS) generation play vital roles in PS-AOPs. However, the internal electric field mediated activation methods, like introducing chemicals and materials, are often restricted by their intrinsic properties. Conversely, the introduction of external fields can provide extra energy to remarkably enhance the PS activation performance from outside, acting as an additional impetus to promote the cleavage of OO bond and thus improve the generation efficiency of ROS. In this review, a comprehensive overview of the external field enhanced PS-AOPs from fundamentals to applications was introduced. Specifically, the activation mechanisms under different external fields, recent advances and their influencing factors, as well as potential practical applications of the external field enhanced PS-AOPs were summarized. The perspectives from the opportunity to challenge were thus made for future investigation. Therefore, this review is expected to give a systematic overview of external-field enhanced PS-AOPs, providing a new direction towards the improvement on catalytic efficiency of PS-AOPs through the rational utilization of external fields.
Collapse
Affiliation(s)
- Huiru Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
5
|
Luo Q, Zhuang W, Sui M. Combating Antibiotic Resistance in Persulfate-Based Advanced Oxidation Processes: Activation Methods and Energy Consumption. ENVIRONMENTAL RESEARCH 2025; 270:120932. [PMID: 39864723 DOI: 10.1016/j.envres.2025.120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) have become increasing concerning issues, threatening human health. Persulfate-based advanced oxidation processes (PS-AOPs), due to their remarkable potential in combating antibiotic resistance, have garnered significant attention in the field of disinfection in recent years. In this review, we systematically evaluated the efficacy and underlying mechanism of PS integration with various activation methods for the elimination of ARB/ARGs. These approaches encompass physical methods, catalyst activation, and hybrid techniques with photocatalysis, ozonation, and electrochemistry. Additionally, we employed Chick's model and electrical energy per log order (EE/O) to assess the performance and energy efficiency, respectively. This review aims at providing a guide for future investigation on PS-AOPs for antibiotic resistance control.
Collapse
Affiliation(s)
- Qianqian Luo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Wei Zhuang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Minghao Sui
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
6
|
Zhu R, Hui L, Zhao Z, Zhou Q, Duong TC, Li J, Liu Z, Ding D. The morphology and structure of zero-valent iron nanosheets promote the activation of persulfate for degradation of ciprofloxacin. ENVIRONMENTAL RESEARCH 2025; 268:120766. [PMID: 39788445 DOI: 10.1016/j.envres.2025.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC2-2) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC2-2 showed considerably better CIP degradation efficiency (96.9% at 20 mg L-1) than traditional catalysts. Furthermore, Fe@BC2-2 exhibited CIP degradation efficiency above 96% in a wide pH range (3-11) and high resistance to interference from various inorganic anions and humic acid even under real water body conditions. The Fe@BC2-2 catalyst showed good magnetic separation performance and maintained high CIP degradation efficiency (87.0%) after five degradation-regeneration cycles. CIP degradation was facilitated by ZVI nanosheets along with functional groups and defects on the surface of the biochar. As determined through radical-quenching experiments, both radical and non-radical pathways contributed to the degradation of CIP, with the non-radical pathway being dominant, especially with singlet oxygen (1O2) as the active species. The degradation pathway of CIP was inferred through the analysis of intermediate products, which showed lower toxicity than CIP. This work not only proposes a strategy for the utilization of traditional kraft pulping lignin and Fenton sludge but also presents an innovative catalyst for the degradation of antibiotics.
Collapse
Affiliation(s)
- Rongyao Zhu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Lanfeng Hui
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| | - Zhiqiang Zhao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Quanwei Zhou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Tan Cuong Duong
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Jiayan Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Zhong Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Dayong Ding
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, PR China.
| |
Collapse
|
7
|
Jun B, Choi J, Son Y. Ultrasonic Activation of Persulfate for the Removal of BPA in 20, 28, and 300 kHz Systems. ULTRASONICS SONOCHEMISTRY 2025; 114:107281. [PMID: 39983292 DOI: 10.1016/j.ultsonch.2025.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The effect of ultrasound (US) on persulfate (PS) activation was investigated to determine whether acoustic cavitation can effectively induce PS activation for bisphenol A (BPA) degradation at 20, 28, and 300 kHz under various temperature conditions. The optimal liquid volume in the vessel was geometrically determined to be 400, 900, and 420 mL at 20, 28, and 300 kHz, respectively, using KI dosimetry and sonochemiluminescence image analysis. The pseudo-1st-order reaction kinetic constants in the only PS, only US, and US/PS processes at 20, 28, and 300 kHz were obtained under 5-10 ℃, 15-20 ℃, 25-30 ℃, 45-50 ℃, 55-60 ℃, and no temperature control conditions. No notable BPA degradation occurred at 5-10 ℃, 15-20 ℃, and 25-30 ℃ in the only PS processes for all frequencies. The highest sonochemical BPA degradation was obtained at 300 kHz, and much lower BPA degradation was observed at 45-50 ℃ and 55-60 ℃ for all frequencies in the only US processes. No notable enhancement of BPA degradation was observed at 5-10 ℃, 15-20 ℃, and 25-30 ℃ in the US/PS processes compared to the only US processes for all frequencies. At 20 kHz and temperatures between 55 and 60 ℃, the highest BPA degradation was obtained, with a synergistic effect of 171 %. However, the enhancement might be due to the instant or local temperature increase, and not due to acoustic cavitation. No notable PS activation by US irradiation was observed in the US/PS processes in this study. The profiles of the generated sulfate ion concentrations in the US/PS processes confirmed this. Some previous studies found high synergistic effects, whereas others have found low or no synergistic effects in US/PS processes.
Collapse
Affiliation(s)
- Bokyung Jun
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Water Environment Research, Gyeonggi-do Institute of Health and Environment, Suwon 16381, Republic of Korea
| | - Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
| |
Collapse
|
8
|
Yang H, Lee CG, Lee J. Piezocatalysis-combined advanced oxidation processes for organic pollutant degradation in water system. ULTRASONICS SONOCHEMISTRY 2025; 113:107219. [PMID: 39756196 PMCID: PMC11757788 DOI: 10.1016/j.ultsonch.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
The piezoelectric catalyst process has emerged as a promising technology for energy harvesting, effectively converting natural mechanical energies, such as wind, water flow, and waves, into usable electrical energy using piezoelectric materials. In recent years, there has been a growing interest in applying this technology to water treatment to address environmental challenges. Concurrently, research efforts have focused on enhancing the efficiency of piezoelectric catalysis by integrating it with advanced oxidation processes (AOPs). This combination has demonstrated significantly better performance than traditional single-process methods. This review offers a comprehensive overview of the fundamental principles of piezocatalysis and explores the evolution of research in this field. It provides a detailed analysis of how piezocatalysis has been developed and applied, particularly in water treatment. The review also includes a comparative assessment of various processes used to remove organic pollutants from water, focusing on recent advancements that combine piezocatalysis with AOPs. Furthermore, the limitations of the current research were discussed, and future research directions were suggested based on the overall findings. By summarizing the progress and challenges in this area, the review aims to provide valuable insights and guide future studies to enhance the effectiveness and application of piezoelectric catalysis in environmental remediation.
Collapse
Affiliation(s)
- Heejin Yang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Chang-Gu Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea.
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Faggiano A, Martínez-Piernas AB, Ricciardi M, Motta O, Fiorentino A, Proto A. A chemometric approach to the interaction of hydrogen peroxide and thermally activated persulfate in the removal of aromatic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123957. [PMID: 39740469 DOI: 10.1016/j.jenvman.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
This study evaluates the combined use of H₂O₂ and thermally activated S₂O₈2⁻ (T-PDS) for the degradation of phenolic compounds (PhOH) in wastewater, aiming to limit or eliminate sludge production. Phenolic compounds are common in industrial effluents, and their effective removal is crucial for reducing environmental impact. The study employs Response Surface Methodology (RSM) and Principal Component Analysis (PCA) to optimise critical variables such as temperature, pH, and oxidant concentrations. Optimal conditions were determined to be a temperature of 70 °C, pH 5, and a H2O2/S2O82- molar ratio of 1:6. Under these conditions, the system achieved an 89% PhOH degradation efficiency, reducing the concentration from 10 to 1.2 mg L-1 after 120 min of treatment. The kinetic analysis revealed a rapid initial reduction in PhOH concentration by 38% (from 10 to 6.2 mg L-1) within the first 15 min, followed by a slower degradation phase. This suggests a complex reaction mechanism, likely influenced by oxidant consumption and intermediate formation. The model demonstrated high precision, with R2 values of 0.99 for PhOH and S2O82-and slightly lower for H₂O₂ (R2 = 0.98). A brief cost analysis estimated the treatment cost at €6.86 per cubic meter of wastewater, showing the economic viability of the process. Additionally, eliminating sludge formation reduces operational costs related to sludge management and disposal, making the H2O2/T-PDS system a promising solution for large-scale industrial applications in sustainable wastewater treatment.
Collapse
Affiliation(s)
- Antonio Faggiano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Ana B Martínez-Piernas
- Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, 29071, Malaga, Spain
| | - Maria Ricciardi
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende 1, 84081, Baronissi, SA, Italy
| | - Antonino Fiorentino
- Department of Chemistry, University of Milan, Via Golgi 19, 20133, Milan, Italy.
| | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
10
|
Yang F, Zhu L, Xu Z, Han Y, Lin X, Shi J, Sun Z, Duan X. Multi-active photocatalysts of biochar-doped g-C 3N 4 incorporated with polyoxometalates for the high-efficient degradation of sulfamethoxazole. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124715. [PMID: 39151784 DOI: 10.1016/j.envpol.2024.124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Sulfamethoxazole (SMX) is one of major antibiotic contaminants in current aqueous environment. In this paper, waste loofah and melamine were co-carbonized to prepare biochar-doped g-C3N4 (CCN) by a one-pot method and then combined with Co2PMo11VO40 (CoPMoV) using a binder to obtain the novel polyoxometalates (POMs) photocatalytic composites (CCN/CoPMoV). The incorporation of CoPMoV dramatically reduced the photogenerated carrier recombination and led to a small band gap. Under visible light, the synergetic activation from biochar, g-C3N4 and POMs can remove 98.5% of SMX (k = 0.215 min-1) in the peroxymonosulfate (PMS) system within 20 min and keep its high stability with the degradation of 88.9% after five cycles. Multi-active sites from CCN/CoPMoV are contributed to develop the most active species of SO4-∙, ·OH, 1O2, and h+. The validity in the degradation of SMX makes CCN/CoPMoV a promising and potential material for the removal of aqueous pollutants in the future.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Lihe Zhu
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Zushen Xu
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Yongwei Han
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Xue Lin
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China
| | - Zhong Sun
- School of Chemical Engineering, Northeast Electric Power University, 169 Changchun Road, Shipyard District, Jilin, 132012, China
| | - Xixin Duan
- Key Laboratory of Wooden Materials Science and Engineering, Beihua University, 3999 East Binjiang Road, Fengman District, Jilin, 132013, China.
| |
Collapse
|
11
|
Zhang J, Wang X, Liu Y, Jin T, Liu L, Ma X, Ren G. Enhanced cycling of Fe(III)/Fe(II) and mass transfer strategy for efficient and stable activation of peroxydisulfate for water decontamination via a flow-through Fe-MOFs cathode. CHEMOSPHERE 2024; 366:143369. [PMID: 39307470 DOI: 10.1016/j.chemosphere.2024.143369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The efficiency and stability of the electrical activation of persulfate (PS) by transition metal-based cathode are controlled by the cycling of Fe(III)/Fe(II) and the mass transfer of PS. In this study, the mixed-valence MOFs catalyst (FeII-MIL-53(Fe)) modified flow-through cathode was prepared for the first time. FeII-MIL-53(Fe) was prepared by replacing part of the iron-oxygen network structure in MIL-53(Fe) with Fe(II), resulting in the formation of coordinated unsaturated iron centers (CUICs). The increase of the Fe(III) CUICs facilitated the conversion of Fe(III) to Fe(II). Furthermore, the cycling of Fe(III)/Fe(II) was further promoted by the electric field. Meanwhile, the hydrodynamic behavior of flow-through cathode was indicated by the computational fluid dynamics (CFD) simulation. The quenching experiments and electron paramagnetic resonance (EPR) results showed that several reactive specie (SO4·-, ·OH, O2·- and 1O2) were produce. In summary, this work provided an effective strategy for the efficient and stable electrical activation of PDS.
Collapse
Affiliation(s)
- Jie Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xufei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yiwei Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Tao Jin
- China Construction Eco-environmental Group CO., LTD, Beijing, 100037, China
| | - Liang Liu
- CCCC First Harbor Consultants Co., Ltd., Tianjin, 300222, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
12
|
Pinna M, Zava M, Grande T, Prina V, Monticelli D, Roncoroni G, Rampazzi L, Hildebrand H, Altomare M, Schmuki P, Spanu D, Recchia S. Enhanced Photocatalytic Paracetamol Degradation by NiCu-Modified TiO 2 Nanotubes: Mechanistic Insights and Performance Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1577. [PMID: 39404304 PMCID: PMC11477857 DOI: 10.3390/nano14191577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Anodic TiO2 nanotube arrays decorated with Ni, Cu, and NiCu alloy thin films were investigated for the first time for the photocatalytic degradation of paracetamol in water solution under UV irradiation. Metallic co-catalysts were deposited on TiO2 nanotubes using magnetron sputtering. The influence of the metal layer composition and thickness on the photocatalytic activity was systematically studied. Photocatalytic experiments showed that only Cu-rich co-catalysts provide enhanced paracetamol degradation rates, whereas Ni-modified photocatalysts exhibit no improvement compared with unmodified TiO2. The best-performing material was obtained by sputtering a 20 nm thick film of 1:1 atomic ratio NiCu alloy: this material exhibits a reaction rate more than doubled compared with pristine TiO2, enabling the complete degradation of 10 mg L-1 of paracetamol in 8 h. The superior performance of NiCu-modified systems over pure Cu-based ones is ascribed to a Ni and Cu synergistic effect. Kinetic tests using selective holes and radical scavengers unveiled, unlike prior findings in the literature, that paracetamol undergoes direct oxidation at the photocatalyst surface via valence band holes. Finally, Chemical Oxygen Demand (COD) tests and High-Resolution Mass Spectrometry (HR-MS) analysis were conducted to assess the degree of mineralization and identify intermediates. In contrast with the existing literature, we demonstrated that the mechanistic pathway involves direct oxidation by valence band holes.
Collapse
Affiliation(s)
- Marco Pinna
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy;
| | - Martina Zava
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Tommaso Grande
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Veronica Prina
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Damiano Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Gianluca Roncoroni
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Laura Rampazzi
- Department of Human Sciences and Innovation for the Territory, University of Insubria, via Sant’Abbondio 12, 22100 Como, Italy;
| | - Helga Hildebrand
- Department of Materials Science WW4-LKO, Friedrich Alexander University of Erlangen Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany; (H.H.); (P.S.)
| | - Marco Altomare
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich Alexander University of Erlangen Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany; (H.H.); (P.S.)
- Regional Center of Advanced Technologies and Materials, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| |
Collapse
|
13
|
Jia W, Li Y, Chen C, Wu Y, Liang Y, Du J, Feng X, Wang H, Wu Q, Guo WQ. Unveiling the fate of metal leaching in bimetal-catalyzed Fenton-like systems: pivotal role of aqueous matrices and machine learning prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135291. [PMID: 39047571 DOI: 10.1016/j.jhazmat.2024.135291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Metal-based catalytic materials exhibit exceptional properties in degrading emerging pollutants within Fenton-like systems. However, the potential risk of metal leaching has become pressing environmental concern. This study addressed scientific issues pertaining to the leaching behavior and control strategies for metal-based catalytic materials. Innovative cobalt-aluminum hydrotalcite (CoAl-LDH) triggered peroxymonosulfate (PMS) activation system was constructed and achieved near-complete removal of Ciprofloxacin (CIP) across diverse water quality environments. Notably, it was found that the tunable ion exchange and Al3+ stabilization of CoAl-LDH occurred due to the particularity of neutral water quality, resulting in significantly lower Co2+ leaching levels (0.321 mg/L) compared to acidic conditions (5.103 mg/L). In light of this, machine learning technology was then employed for the first time to simulate the dynamic trend of Co2+ leaching and elucidated the critical regulatory roles and mechanisms of Al3+, aqueous matrix, and reaction rate. Furthermore, degradation systems based on different water quality and metal leaching levels regulated the generation levels of SO4.- and O2∙-, and the unique advantages of free radical attack paths were clarified through CIP degradation products and ecotoxicity analysis. These findings introduced novel insights and approaches for engineering application and pollution control in metal-based Fenton-like water treatment.
Collapse
Affiliation(s)
- Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuchu Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juanshan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, South Korea
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Gaber MM, Shokry H, Samy M, A El-Bestawy E. Green approach for fabricating hybrids of food waste-derived biochar/zinc oxide for effective degradation of bromothymol blue dye in a photocatalysis/persulfate activation system. CHEMOSPHERE 2024; 364:143245. [PMID: 39233302 DOI: 10.1016/j.chemosphere.2024.143245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/08/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
This study presents novel composites of biochar (BC) derived from spinach stalks and zinc oxide (ZnO) synthesized from water hyacinth to be used for the first time in a hybrid system for activating persulfate (PS) with photocatalysis for the degradation of bromothymol blue (BTB) dye. The BC/ZnO composites were characterized using innovative techniques. BC/ZnO (2:1) showed the highest photocatalytic performance and BC/ZnO (2:1)@(PS + light) system attained BTB degradation efficiency of 89.47% within 120 min. The optimum operating parameters were determined as an initial BTB concentration of 17.1 mg/L, a catalyst dosage of 0.7 g/L, and a persulfate initial concentration of 8.878 mM, achieving a BTB removal efficiency of 99.34%. The catalyst showed excellent stability over five consecutive runs. Sulfate radicals were the predominant radicals involved in the degradation of BTB. BC/ZnO (2:1)@(PS + light) system could degrade 88.52%, 84.64%, 81.5%, and 77.53% of methylene blue, methyl red, methyl orange, and Congo red, respectively. Further, the BC/ZnO (2:1)@(PS + light) system effectively activated PS to eliminate 97.49% of BTB and 85.12% of dissolved organic carbon in real industrial effluents from the textile industry. The proposed degradation system has the potential to efficiently purify industrial effluents which facilitates the large-scale application of this technique.
Collapse
Affiliation(s)
- Mohamed Mohamed Gaber
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt; Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Hassan Shokry
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El Arab City 21934, Alexandria, Egypt; Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Mahmoud Samy
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| | - Ebtesam A El-Bestawy
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horria Ave. El-Shatby, P.O. Box 832, Alexandria, Egypt.
| |
Collapse
|
15
|
da Silva MP, de Souza ACA, Ferreira ÁRD, do Nascimento PLA, Fraga TJM, Cavalcanti JVFL, Ghislandi MG, da Motta Sobrinho MA. Synthesis of superparamagnetic Fe 3O 4-graphene oxide-based material for the photodegradation of clonazepam. Sci Rep 2024; 14:18916. [PMID: 39143177 PMCID: PMC11324737 DOI: 10.1038/s41598-024-67352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
The global concern over water pollution caused by contaminants of emerging concern has been the subject of several studies due to the complexity of treatment. Here, the synthesis of a graphene oxide-based magnetic material (GO@Fe3O4) produced according to a modified Hummers' method followed by a hydrothermal reaction was proposed; then, its application as a photocatalyst in clonazepam photo-Fenton degradation was investigated. Several characterization analyses were performed to analyze the structure, functionalization and magnetic properties of the composite. A 23 factorial design was used for the optimization procedure to investigate the effect of [H2O2], GO@Fe3O4 dose and pH on clonazepam degradation. Adsorption experiments demonstrated that GO@Fe3O4 could not adsorb clonazepam. Photo-Fenton kinetics showed that total degradation of clonazepam was achieved within 5 min, and the experimental data were better fitted to the PFO model. A comparative study of clonazepam degradation by different processes highlighted that the heterogeneous photo-Fenton process was more efficient than homogeneous processes. The radical scavenging test showed that O 2 · - was the main active free radical in the degradation reaction, followed by hydroxyl radicals (•OH) and holes (h+) in the valence layer; accordingly, a mechanism of degradation was proposed to describe the process.
Collapse
Affiliation(s)
- Maryne Patrícia da Silva
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| | - Ana Caroline Alves de Souza
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Ágata Rodrigues Deodato Ferreira
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Pedro Lucas Araújo do Nascimento
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Department of Food Science, Federal University of Pernambuco Agreste (UFAPE), Bom Pastor Avenue, W/N, Boa Vista, Garanhuns, PE, 55292-270, Brazil
| | | | - Marcos Gomes Ghislandi
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
- Federal Rural University of Pernambuco (UFRPE), 300 Cento e Sessenta e Três Av., Cabo de Santo Agostinho, PE, Brazil
| | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE, 50670-901, Brazil
| |
Collapse
|
16
|
Chen X, Yao L, Xu S, He J, Li N, Li J, Liu B, Zhu Y, Chen X, Wang H, Zhu R. Electron transfer mediated photo-Fenton-like synergistic catalysis of Fe,Cu-doped MIL-101 coupled with Ag 3PO 4: Quantitative evaluation and DFT calculations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124083. [PMID: 38697244 DOI: 10.1016/j.envpol.2024.124083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Widespread use of tetracycline (TC) results in its persistent residue and bioaccumulation in aquatic environments, posing a high toxicity to non-target organisms. In this study, a bimetal-doped composite material Ag3PO4/MIL-101(Fe,Cu) has been designed for the treatment of TC in aqueous solutions. As the molar ratio of Fe/Cu in composite is 1:1, the obtained material AP/MFe1Cu1 is placed in an aqueous environment under visible light irradiation in the presence of 3 mM peroxydisulfate (PDS), which forms a photo-Fenton-like catalytic system that can completely degrade TC (10 mg/L) within 60 min. Further, the degradation rate constant (0.0668 min-1) is 5.66 and 7.34 times higher than that of AP/MFe and AP/MCu, respectively, demonstrating a significant advantage over single metal-doped catalysts. DFT calculations confirm the strong adsorption capacity and activation advantage of PDS on the composite surface. Therefore, the continuous photogenerated electrons (e-) accelerate the activation of PDS and the production of SO4•-, resulting in the stripping of abundant photogenerated h + for TC oxidation. Meanwhile, the internal circulation of FeⅢ/FeⅡ and CuⅡ/CuⅢ in composite also greatly enhances the photo-Fenton-like catalytic stability. According to the competitive dynamic experiments, SO4•- have the greatest contribution to TC degradation (58.93%), followed by 1O2 (23.80%). The degradation intermediates (products) identified by high-performance liquid chromatography-mass spectrometry (HPLC/MS) technique indicate the involvement of various processes in TC degradation, such as dehydroxylation, deamination, N-demethylation, and ring opening. Furthermore, as the reaction proceeds, the toxicity of the intermediates produced during TC degradation gradually decreases, which can ensure the safety of the aquatic ecosystem. Overall, this work reveals the synergy mechanism of PDS catalysis and photocatalysis, as well as provides technical support for removal of TC-contaminated wastewater.
Collapse
Affiliation(s)
- Xiaojuan Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Liang Yao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China; Xinjiang Institute of Technology, Xinjiang, 735400, China
| | - Song Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Juhua He
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Ning Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Jiaxin Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Bin Liu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Yanping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528225, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Mehaidli AP, Mandal R, Simha P. Selective degradation of endogenous organic metabolites in acidified fresh human urine using sulphate radical-based advanced oxidation. WATER RESEARCH 2024; 257:121751. [PMID: 38744062 DOI: 10.1016/j.watres.2024.121751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The human urine metabolome is complex, containing a wide range of organic metabolites that affect treatment of urine collected in resource-oriented sanitation systems. In this study, an advanced oxidation process involving heat-activated peroxydisulphate was used to selectively oxidise organic metabolites in urine over urea and chloride. Initial experiments evaluated optimal conditions (peroxydisulphate dose, temperature, time, pH) for activation of peroxydisulphate in unconcentrated, non-hydrolysed synthetic urine and real urine acidified to pH 3.0. Subsequent experiments determined the fate of 268 endogenous organic metabolites (OMs) and removal of COD from unconcentrated and concentrated real urine (80-90% mass reduced by evaporation). The results revealed >90% activation of 60 mM peroxydisulphate in real unconcentrated urine heated to 90 °C for 1 h, resulting in 43% ΣOMs degradation, 22% COD removal and 56% total organic carbon removal, while >94% of total nitrogen and >97% of urea in real unconcentrated urine were recovered. The mechanism of urea degradation was identified to be chemical hydrolysis to ammonia, with the rate constant for this reaction determined to be 1.9 × 10-6 s-1 at pH 3.0 and 90 °C. Treating concentrated real urine resulted in similar removal of COD, ΣOMs degradation and total nitrogen loss as observed for unconcentrated urine, but with significantly higher chloride oxidation and chemical hydrolysis of urea. Targeted metabolomic analysis revealed that peroxydisulphate treatment degraded 157 organic metabolites in urine, of which 67 metabolites were degraded by >80%. The rate constant for the reaction of sulphate radicals with oxidisable endogenous organic metabolites in urine was estimated to exceed 108 M-1 s-1. These metabolites were preferentially oxidised over chloride and urea in acidified, non-hydrolysed urine treated with peroxydisulphate. Overall, the findings support the development of emerging urine recycling technologies, including alkaline/acid dehydration and reverse osmosis, where the presence of endogenous organic urine metabolites significantly influences treatment parameters such as energy demand and product purity.
Collapse
Affiliation(s)
- Ali Peter Mehaidli
- Swedish University of Agricultural Sciences, Department of Energy and Technology, SE 75007 Uppsala, Sweden
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Prithvi Simha
- Swedish University of Agricultural Sciences, Department of Energy and Technology, SE 75007 Uppsala, Sweden.
| |
Collapse
|
18
|
Hosseini S, Solymosi GT, White HS. Investigation of the Electrocatalytic Reduction of Peroxydisulfate Using Scanning Electrochemical Microscopy. Anal Chem 2024; 96:8424-8431. [PMID: 38749922 DOI: 10.1021/acs.analchem.3c05824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The elementary steps of the electrocatalytic reduction of S2O82- using the Ru(NH3)63+/2+ redox couple were investigated using scanning electrochemical microscopy (SECM) and steady-state voltammetry (SSV). SECM investigations were carried out in a 0.1 M KCl solution using a 3.5 μm radius carbon ultramicroelectrode (UME) as the SECM tip and a 25 μm radius platinum UME as the substrate electrode. Approach curves were recorded in the positive feedback mode of SECM by reducing Ru(NH3)63+ at the tip electrode and oxidizing Ru(NH3)62+ at the substrate electrode, as a function of the tip-substrate separation and S2O82- concentration. The one-electron reaction between electrogenerated Ru(NH3)62+ and S2O82- yields the unstable S2O83•-, which rapidly dissociates to produce highly oxidizing SO4•-. Because SO4•- is such a strongly oxidizing species, it can be further reduced at both the tip and the substrate, or it can react with Ru(NH3)62+ to regenerate Ru(NH3)63+. SECM approach curves display a complex dependence on the tip-substrate distance, d, due to redox mediation reactions at both the tip and the substrate. Finite element method (FEM) simulations of both SECM approach curves and SSV confirm a previously proposed mechanism for the mediated reduction of S2O82- using the Ru(NH3)63+/2+ redox couple. Our results provide a lower limit for dissociation rate constant of S2O83•- (∼1 × 106 s-1), as well as the rate constants for electron transfer between SO4•- and Ru(NH3)62+ (∼1 × 109 M-1 s-1) and between S2O82- and Ru(NH3)62+ (∼7 × 105 M-1 s-1).
Collapse
Affiliation(s)
- Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Gergely T Solymosi
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Henry S White
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Du C, Lv Y, Yu H, Zhang Y, Zhu H, Dong W, Zou Y, Peng H, Zhou L, Wen X, Cao J, Jiang J. In situ synthesis of oxygen-doped carbon quantum dots embedded in MIL-53(Fe) for efficient degradation of oxytetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26686-26698. [PMID: 38456976 DOI: 10.1007/s11356-024-32729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Introducing carbon quantum dots (CQDs) into photocatalysts is believed to boost the charge transfer rate and reduce charge complexation. Doping heteroatoms such as N, S, or P enable CQDs to have an uplifting electron transfer capability. However, the application of oxygen-doped CQDs to improve the performance of photocatalysts has rarely been reported. Herein, a type of carbon-oxygen quantum dots (COQDs) was in situ embedded into MIL-53(Fe) to aid peroxydisulfate (PDS)-activated degradation of oxytetracycline (OTC) under visible light irradiation. The successful embedding of COQDs was confirmed by XRD, FT-IR, XPS, SEM, and TEM techniques. Photoelectrochemical testing confirmed its better performance. The prepared COQDs1/MIL-53(Fe) showed 88.2% decomposition efficiency of OTC in 60 min, which was 1.45 times higher than that of pure MIL-53(Fe). In addition, the performance of the material was tested at different pH, OTC concentrations, catalyst dosing, and PDS dosing. It was also subjected to cyclic testing to check stability. Moreover, free radical trapping experiments and electron paramagnetic resonance were conducted to explore the possible OTC deterioration mechanism. Our work provides a new idea for the development of MOFs for water treatment and remediation.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Yinchu Lv
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China.
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China.
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China.
| | - Yin Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Hao Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Wei Dong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Yulv Zou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Huaiyuan Peng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, P.R. China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, P.R. China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, P.R. China
| |
Collapse
|
20
|
Liu S, Zhan J, Cai B. Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Adv 2024; 14:7940-7963. [PMID: 38454947 PMCID: PMC10915833 DOI: 10.1039/d4ra00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.
Collapse
Affiliation(s)
- Shiben Liu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| |
Collapse
|
21
|
Dehghani A, Baradaran S, Movahedirad S. Synergistic degradation of Congo Red by hybrid advanced oxidation via ultraviolet light, persulfate, and hydrodynamic cavitation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116042. [PMID: 38310821 DOI: 10.1016/j.ecoenv.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
In the present study, hybrid activation of sodium peroxydisulfate (PS) by hydrodynamic cavitation and ultraviolet radiation was investigated for Congo Red (CR) degradation. Experiments were conducted using the Box-Benken design on inlet pressure (2-6 bar), PS concentration (0-50 mg. L-1) and UV radiation power (0-32 W). According to the results, at the optimum point where the pressure, PS concentration and UV radiation power were equal to 4.5 bar, 30 mg. L-1 and 16 W respectively, 92.01% of decolorization was achieved. Among the investigated processes, HC/UV/PS was the best process with the rate constant and synergetic coefficient of 38.6 × 10-3 min-1 and 2.76, respectively. At the optimum conditions, increasing the pollutant concentration from 20 mg. L-1 to 80 mg. L-1 decrease degradation rate from 92.01 to 45.21. Presence of natural organic mater (NOM) in all concentrations inhibited the CR degradation. Quenching experiments revealed that in the HC/UV/PS hybrid AOP free radicals accounted for 63.4% of the CR degradation, while the contribution of sulfate (SRs) and hydroxyl radicals (HRs) was 53.1% and 46.9%, respectively.
Collapse
Affiliation(s)
- Abolfazl Dehghani
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Soroush Baradaran
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Salman Movahedirad
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
22
|
Broterson YB, Núñez-de la Rosa Y, Guillermo Cuadrado Durango L, Rossi Forim M, Hammer P, Aquino JM. CoFe 2O 4 as a source of Co(II) ions for imidacloprid insecticide oxidation using peroxymonosulfate: Influence of process parameters and surface changes. CHEMOSPHERE 2024; 352:141278. [PMID: 38266880 DOI: 10.1016/j.chemosphere.2024.141278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Nanometric cobalt magnetic ferrite (CoFe2O4) synthesized by distinct methods was used for in situ chemical activation of peroxymonosulfate (PMS) under neutral conditions to oxidize imidacloprid (IMD) insecticide. The effect of CoFe2O4 load (0.125-1.0 g L-1) and PMS concentration (250-1000 μM) was investigated as well as the influence of phosphate buffer and Co(II) ions. PMS activation by Co(II) ions, including those leached from CoFe2O4 (>50 μg L-1), exhibited a strong influence on IMD oxidation and, apparently, without substantial contributions from the solid phase. Within the prepared solid materials (i.e., using sol-gel and co-precipitation methods), high oxidation rates (ca. 0.5 min-1) of IMD were attained in ultrapure water. Phosphate buffer had no significant influence on the IMD oxidation rate and level, however, its use and solution pH have shown to be important parameters, since higher PMS consumption was observed in the presence of buffered solutions at pH 7. IMD byproducts resulting from hydroxylation reactions and rupture of the imidazolidine ring were detected by mass spectrometry. At optimum conditions (0.125 g L-1 of CoFe2O4 and 500 μM of PMS), the CoFe2O4 nanoparticles exhibited an increase in the charge transfer resistance and an enhancement in the surface hydroxylation after PMS activation, which led to radical (HO● and SO4●-) and nonradical (1O2) species. The latter specie led to high levels of IMD oxidation, even in a complex water matrix, such as simulated municipal wastewater at the expense of one-order decrease in the IMD oxidation rate.
Collapse
Affiliation(s)
- Yoisel B Broterson
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | - Yeison Núñez-de la Rosa
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | | | - Moacir Rossi Forim
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | - Peter Hammer
- São Paulo State University (UNESP), Institute of Chemistry, Department of Physical Chemistry, 14800-900, Araraquara, SP, Brazil
| | - José M Aquino
- Federal University of São Carlos (UFSCar), Department of Chemistry, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
23
|
Li Q, Fang X, Jin L, Sun X, Huang H, Ma R, Zhao H, Ren H. Scientometric analysis of electrocatalysis in wastewater treatment: today and tomorrow. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19025-19046. [PMID: 38374500 DOI: 10.1007/s11356-024-32472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Electrocatalytic methods are valuable tools for addressing water pollution and scarcity, offering effective pollutant removal and resource recovery. To investigate the current status and future trends of electrocatalysis in wastewater treatment, a detailed analysis of 9417 papers and 4061 patents was conducted using scientometric methods. China emerged as the leading contributor to publications, and collaborations between China and the USA have emerged as the most frequent partnerships. Primary article co-citation clusters focused on oxygen evolution reaction and electrochemical oxidation, transitioning towards advanced oxidation processes ("persulfate activation"), and electrocatalytic reduction processes ("nitrate reduction"). Bifunctional catalysts, theoretical calculations, electrocatalytic combination technologies, and emerging contaminants were identified as current research hotspots. Patent analysis revealed seven types of electrochemical technologies, which were compared using SWOT analysis, highlighting electrochemical oxidation as prominent. The technological evolution presented the pathway of electro-Fenton to combined electrocatalytic technologies with biochemical processes, and finally to coupling with electrocoagulation. Standardized evaluation systems, waste resource utilization, and energy conservation were important directions of innovation in electrocatalytic technologies. Overall, this study provided a reference for researchers to understand the framework of electrocatalysis in wastewater treatment and also shed light on potential avenues for further innovation in the field.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoya Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiangzhou Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Rui Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Han Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163, Xianlin Avenue, Qixia District, Nanjing, 210023, Jiangsu, People's Republic of China
| |
Collapse
|
24
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Huang Y, Mei J, Duan E, Zhu Y, Wu Y. Effect and its mechanism of potassium persulfate on aerobic composting process of vegetable wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7111-7121. [PMID: 38157178 DOI: 10.1007/s11356-023-31466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Vegetable waste (VW) is a potential organic fertilizer resource. As an important way to utilize vegetable wastes, aerobic composting of VW generally has the problems of long fermentation cycle and incomplete decomposition of materials. In this study, 0.3-1.2% of potassium persulfate (KPS) was added to promote the maturity of compost. The results showed that the addition of KPS promoted the degradation of materials, accelerated the temperature rise of compost. KPS also promoted the formation of humic substances (HS). Compared with the control, HS contents of treatments with KPS addition increased by 7.81 ~ 17.52%. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) analysis reveal the mechanism of KPS affecting the composting process: KPS stimulated the degradation of various organic substances such as lignin at high temperature stage, and the degradation of lignin could accelerate the release and decomposition of other components; KPS made the structure of the material looser, with more voids and pores, and more specific surface area of the material, which was more suitable for microbial degradation activities. Therefore, the addition of KPS can promote the decomposition of organic matter in the early stage of composting, accelerate the process of thermophilic phase, and shorten the composting process and improve product maturity.
Collapse
Affiliation(s)
- YuYing Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Juan Mei
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou, 215009, China.
| | - EnShuai Duan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - YanZe Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
26
|
Kang J, Choi J, Lee D, Son Y. UV/persulfate processes for the removal of total organic carbon from coagulation-treated industrial wastewaters. CHEMOSPHERE 2024; 346:140609. [PMID: 37926165 DOI: 10.1016/j.chemosphere.2023.140609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Sulfate radical-based oxidation processes were investigated to understand the relationship between persulfate (PS) consumption and total organic carbon (TOC) removal from industrial wastewater under various PS concentrations. First, the degradation and mineralization of Bisphenol A (BPA) (initial concentration: 11 mg/L) were investigated in ultraviolet (UV)/PS systems. Complete degradation was achieved within 30 min of UV irradiation, and 41%-72% TOC removal was achieved at PS concentrations of 200 and 400 mg/L. The consumed concentration of S2O82- and generated concentration of SO42- increased gradually to similar levels. The ratio of the PS consumption to TOC removal based on the mass concentration (mg/L) was 14.5 and 23.2 at 180 min for 200 and 400 mg/L of S2O82-, respectively. Three types of coagulation-treated industrial wastewater from metal-processing, food-processing, and adhesive-producing plants were obtained, and TOC removal was analyzed using the same UV/PS systems (initial TOC concentration: 100 mg/L). The TOC removal rates ranged from 16.9% to 94.4% after 180 min of UV irradiation at PS concentrations of 1,000, 2,000, 4,000, and 8,000 mg S2O82-/L. Despite the higher TOC removal at higher PS concentrations, the PS activation efficiency decreased significantly as the PS concentration increased. Only approximately 30%-40% activation efficiency was achieved at a PS concentration of 8,000 mg/L. In this study, the ratio of PS consumption to TOC removal ranged from 20.6 to 43.9.
Collapse
Affiliation(s)
- Jumin Kang
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Jongbok Choi
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Dukyoung Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Younggyu Son
- Department of Environmental Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea; Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea.
| |
Collapse
|
27
|
Du C, Lv Y, Cao J, Zhu H, Zhang Y, Zou Y, Peng H, Dong W, Zhou L, Yu G, Yu H, Jiang J. Removal of oxytetracycline from water by S-doped MIL-53(Fe): Synergistic effect of surface adsorption and persulfate activation. ENVIRONMENTAL RESEARCH 2023; 239:116842. [PMID: 37549781 DOI: 10.1016/j.envres.2023.116842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
In this study, a novel catalyst based on MIL-53(Fe) was synthesized and modified through sublimed sulfur (S-MIL-53(Fe)) to induce a synergistic effect of surface adsorption and persulfate activation. The S-doped modification not only increased the surface area but also accelerated the electron transfer process of the iron cycle. The performance of the newly synthesized S-MIL-53(Fe) adsorptive catalyst was evaluated by chemical adsorption and peroxydisulfate (PDS) activated removal of an emerging pollutants, oxytetracycline (OTC). The S-MIL-53(Fe) adsorptive catalyst was able to adsorb 61.7% of OTC after 120 min, and the removal efficiency reached 84.8% within 5 min after PDS dosing. The boosting effect of sulfur on the system was confirmed by characterization analysis and experimental testing. Even after 7 cycles, the removal efficiency of S-MIL-53(Fe) (69.0%) for OTC remained superior to that of pure MIL-53(Fe) (25.1%). Additionally, the adsorption kinetics and adsorption isotherm model of the material were investigated. The possible OTC degrading process was proposed based on radical quenching and electron paramagnetic resonance (EPR). This study provides a feasible way to fabricate an S-doped MIL-53(Fe) adsorptive catalyst for the remediation of antibiotics-containing wastewater.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Yinchu Lv
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China.
| | - Hao Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yin Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yulv Zou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Huaiyuan Peng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Wei Dong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| |
Collapse
|
28
|
Calaixo MRC, Ribeirinho-Soares S, Madeira LM, Nunes OC, Rodrigues CSD. Catalyst-free persulfate activation by UV/visible radiation for secondary urban wastewater disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119486. [PMID: 37925988 DOI: 10.1016/j.jenvman.2023.119486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
This study focuses on the treatment of secondary urban wastewater (W) to improve the effluent quality aiming at the reduction of pathogenic microorganisms for the safe reuse of the treated wastewater (TW). Catalyst-free persulfate activation by radiation-based oxidation was applied as a treatment technology. A parametric study was carried out to select the best operating conditions. Total enterobacteria inactivation (quantified by the log reduction (CFU/100 mL)) was achieved when using [S2O82-] = 1 mM, pH = 8.5 (natural pH of W), T = 25 °C, and I = 500 W/m2. However, storing TW for 3 days promoted the regrowth of bacteria, risking its reutilization. Therefore, in this study, and for the first time, the potential beneficial role of inoculation of wastewater treated by the radiation-activated persulfate process with a diverse bacterial community was evaluated in order to control the regrowth of potentially harmful microorganisms through bacterial competition. For this, TW was diluted with river water (R) in the volume percentages of 5, 25, and 50 (percentages refer to R content), and enterobacteria and total heterotrophs were enumerated before and after storage for 72 h. The results showed total heterotrophs and enterobacteria regrowth for TW and R + TW diluted 5 and 25% after storage. However, for R + TW diluted 50%, only the total heterotrophs regrew. Hence, the treated wastewater generated by the oxidative process diluted with 50% river water complies with the legislated limits for reuse in urban uses or irrigation.
Collapse
Affiliation(s)
- Mário R C Calaixo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
29
|
Wang X, Xiong Y, Yuan B, Wu Y, Hu W, Wang X, Liu W. Performances and mechanisms of the peroxymonosulfate/ferrate(VI) oxidation process in real shale gas flowback water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119355. [PMID: 37857222 DOI: 10.1016/j.jenvman.2023.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Shale gas flowback water (SGFW), which is an inevitable waste product generated after hydraulic fracturing during development, poses a severe threat to the environment and human health. Managing high-salinity wastewater with complex physicochemical compositions is critical for ensuring environmental sustainability of shale gas development. Desalination processes have been recommended to treat SGFW to adhere to the discharge limits. However, organic fouling has become a significant concern in the steady operation of desalination processes, and the effective removal of organic compounds is challenging. This study aimed to develop an effective oxidation method to mitigate membrane fouling in real SGFW treatment process. It adopted the peroxymonosulfate (PMS)/ferrate (Fe(VI)) process, involving both free and non-free radical pathways that can alleviate the negative effects of high-salinity environments on oxidation. The operating parameters were optimized and removal effects were examined, while the synergistic oxidation mechanism and organic conversion of the PMS/Fe(VI) process were also analyzed. The results showed that the PMS/Fe(VI) process exhibited a synergistic effect compared with the PMS and Fe(VI) processes alone, with a total organic carbon (TOC) removal efficiency of 46.8% under optimal reaction conditions in real SGFW. In the Fe(VI)/PMS process, active species such as Fe(V)/Fe(IV), ·OH, and SO4-· were jointly involved in the oxidation of organic matter. Additionally, 99.5% of the total suspended solids and 95.2% of Ba2+ in the SGFW were removed owing to the formation of a coagulant (Fe3+) and SO42- during the reaction. Finally, an ultrafiltration membrane fouling experiment proved that oxidation processes can increase the membrane-specific flux and alleviate fouling resistance. This study can serve as a reference for the design of real SGFW treatment processes and is significant for the environmental management of shale gas development.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Ying Xiong
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, 610095, China
| | - Bo Yuan
- CNPC Research Institute of Safety and Environmental Technology, Beijing, 102206, China
| | - You Wu
- Sichuan Zaojing Baicui Environmental Protection Technology Co., Ltd., Chengdu, 610095, China
| | - Wanjin Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wenshi Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| |
Collapse
|
30
|
Jiang H, Chen H, Wei K, Liu L, Sun M, Zhou M. Comprehensive analysis of research trends and prospects in electrochemical advanced oxidation processes (EAOPs) for wastewater treatment. CHEMOSPHERE 2023; 341:140083. [PMID: 37696481 DOI: 10.1016/j.chemosphere.2023.140083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have emerged as a promising approach for efficient wastewater treatment. However, despite their promising potential, there is a lack of comprehensive analysis regarding the research trends, bibliometric data, and research frontiers of EAOPs. To address this gap, this study conducted a thorough and comprehensive analysis of 2347 related articles in the Web of Science Core Collection Database from 2012 to 2022. The analysis included information on countries, authors, institutions, and more, with a focus on summarizing trends and cutting-edge research hotspots in the field. The University of Barcelona in Spain is the most effective institution. Brillas E. is the most productive author in the world. Research hotspots in EAOPs have evolved from traditional anodic oxidation (AO) to novel electro-Fenton (EF) technology, which focuses on efficient generation of H2O2 and the use of metal-organic frameworks to enhance performance and efficiency. Through systematic research hotspot analysis, the importance of performance comparison of different types of EAOPs, development of new materials, optimization of device parameters, and toxicity assessment of byproducts is highlighted. Concurrently, the rise and mechanisms of emerging EAOPs are predicted and analyzed. Finally, future research on EAOPs technologies should focus on technological coupling, development of new materials, reduction of energy consumption and cost, evaluation and minimization of toxicity, and exploration of green renewable energy sources for larger-scale applications in wastewater treatment pilot plants. In this way, these technologies can contribute to the sustainability of larger industrial wastewater treatment applications and make an important contribution to environmental protection and scientific and technological progress.
Collapse
Affiliation(s)
- Hanfeng Jiang
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haoming Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kajia Wei
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lufan Liu
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingdi Sun
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
31
|
Yang W, Deng Z, Liu L, Zhou K, E SP, Meng L, Ma L, Wei Q. Co-generation of hydroxyl and sulfate radicals via homogeneous and heterogeneous bi-catalysis with the EO-PS-EF tri-coupling system for efficient removal of refractory organic pollutants. WATER RESEARCH 2023; 243:120312. [PMID: 37453402 DOI: 10.1016/j.watres.2023.120312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Advanced oxidation processes are commonly considered one of the most effective techniques to degrade refractory organic pollutants, but the limitation of a single process usually makes it insufficient to achieve the desired treatment. This work introduces, for the first time, a highly-efficient coupled advanced oxidation process, namely Electro-Oxidation-Persulfate-Electro-Fenton (EO-PS-EF). Leveraging the EO-PS-EF tri-coupling system, diverse contaminants can be highly efficiently removed with the help of reactive hydroxyl and sulfate radicals generated via homogeneous and heterogeneous bi-catalysis, as certified by radical quenching and electron spin resonance. Concerning degradation of tetracycline (TC), the EO-PS-EF system witnessed a fast pseudo-first-order reaction kinetic constant of 2.54 × 10-3 s-1, ten times that of a single EO system and three-to-four times that of a binary system (EO-PS or EO-EF). In addition, critical parameters (e.g., electrolyte, pH and temperature) are systematically investigated. Surprisingly, after 100 repetitive trials TC removal can still reach 100% within 30 min and no apparent morphological changes to electrode materials were observed, demonstrating its long-term stability. Finally, its universality was demonstrated with effective degradation of diverse refractory contaminants (i.e., antibiotics, dyes and pesticides).
Collapse
Affiliation(s)
- Wanlin Yang
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Zejun Deng
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| | - Libin Liu
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Kechao Zhou
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
| | - Sharel P E
- School of Engineering, University of Edinburgh, Edinburgh EH9 3DW, United Kingdom
| | - Lingcong Meng
- School of Chemistry, University of Edinburgh, David Brewster Rd, Edinburgh EH9 3FJ, United Kingdom
| | - Li Ma
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| | - Qiuping Wei
- School of Materials Science and Engineering, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China.
| |
Collapse
|
32
|
An Y, Li X, Liu Z, Li Y, Zhou Z, Liu X. Constant oxidation of atrazine in Fe(III)/PDS system by enhancing Fe(III)/Fe(II) cycle with quinones: Reaction mechanism, degradation pathway and DFT calculation. CHEMOSPHERE 2023; 317:137883. [PMID: 36693481 DOI: 10.1016/j.chemosphere.2023.137883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/24/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Quinones are potential pollutants and redox active compounds widely distributed in environmental media. In this study, methyl-p-benzoquinone (MBQ) was introduced into Fe(III)/peroxydisulfate system (Fe(III)/PDS) to expedite the conversion of Fe(III) to Fe(II) and the degradation of atrazine (ATZ), ultimately establishing an environmentally friendly system of "treating pollution with pollution". MBQ/Fe(III)/PDS system showed superior performance to traditional Fe(II)/PDS system in pH range of 2-7. Sulfate radical (SO4•-) and hydroxyl radical (•OH) were confirmed to exist in MBQ/Fe(III)/PDS system according to alcohol quenching experiments and ESR tests. Meanwhile, stable 80% of η[PMSO2] (i.e., the molar ratio of PMSO2 generation to PMSO consumption) was achieved and manifested that highly reactive substance Fe(IV) also participated in MBQ/Fe(III)/PDS system. The spontaneous transformation of MBQ and methyl-hydroquinone (MHQ) drove Fe(III)/Fe(II) cycle, during which MHQ induced Fe(III) reduction and Fe(II) regeneration. Transformation pathways of ATZ were proposed based on HPLC-MS detection and DFT calculation and ATZ degradation could be initiated by lateral chain oxidation and dechlorination-hydroxylation. The acute toxicity, bioaccumulation factor, developmental toxicity and mutagenicity of ATZ and its degradation intermediates were evaluated by Toxicity Estimation Software Tool, and the luminescent bacteria test was conducted to investigate the acute toxicity variation of the reaction solution. Cl- obviously inhibited ATZ degradation and three main by-products generation, while humic acid (HA) had little effect on them probably due to the established balance between inhibition (some components in HA competed to consume reactive species) and acceleration (quinone units in HA also facilitated Fe(III)/Fe(II) cycle).
Collapse
Affiliation(s)
- Yujiao An
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiaowan Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| | - Zihao Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yiwen Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhou Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; North China Power Engineering Co., Ltd of China Power Engineering Group, Beijing 100120, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
33
|
Sizykh M, Batoeva A, Matafonova G. Enhanced catalyst-free degradation and mineralization of ceftriaxone by UV/H2O2 and UV/S2O82− processes using KrCl excilamp (222 nm). J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Thermal effect on sulfamethoxazole degradation in a trivalent copper involved peroxymonosulfate system. J Colloid Interface Sci 2023; 640:121-131. [PMID: 36842418 DOI: 10.1016/j.jcis.2023.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Persulfate (PS) activated by thermal or homogeneous metals can generate reactive oxygen species (ROS) and high-valence-state metals for contaminants degradation, showing great potential for applications. However, thermal effect in peroxymonosulfate (PMS) system with high-valence-state metal is still ambiguous. In this study, divalent copper (Cu(II)) catalysis was taken to explore thermal effect on PMS performance. Results showed that the Sulfamethoxazole (SMX) removal efficiency in the Cu(II)/PMS system at 60 min increased by only 5.9% with temperature increase from 30 °C to 60 °C. Moreover, SMX removal efficiency was excellent at neutral or basic pH, best with PMS concentration of 2.4 mM, and slightly affected by Cu(II) concentration. The singlet oxygen (1O2) was identified as main active species at low temperature while sulfate radicals (SO4-) was more effective at high temperature with Cu(II) co-activation. Also, trivalent copper (Cu(III)) was an important active species. The higher Cu(III) content, the better SMX removal efficiency, but the stronger intermediates toxicity. In combination with removal efficiency and intermediates toxicity at different temperatures, 30 °C was the optimal reaction temperature. Overall, this study provides new perspective on utilization of waste heat and high-valence-state metal for organic wastewater treatment in PMS systems.
Collapse
|
35
|
Ofloxacin Degradation over Nanosized Fe3O4 Catalyst viaThermal Activation of Persulfate Ions. Catalysts 2023. [DOI: 10.3390/catal13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this work, an Fe3O4 catalyst was synthetized in a single step via electrochemical synthesis. The Fe3O4 catalyst was used to evaluate the degradation of Ofloxacin (OFX) using a heterogeneous advanced oxidation process with sodium persulfate (PS). PS activation was successfully achieved via thermal conventional heating directly and subsequently applied for the degradation of OFX. The degradation kinetics were studied under different conditions, such as catalyst and oxidant concentration and temperature. The results show that a higher reaction temperature, catalyst and initial PS dose strongly influence the degradation efficiency. Thermal activation of persulfate was tested at 20, 40 and 60 °C. At 60 °C, the half-time of OFX was 23 times greater than at 20 °C, confirming the activation of persulfate. Mineralization studies also showed that under optimized conditions (20 mM of persulfate, 1 g/L catalyst and 100 mg/L OFX), a 66% reduction in organic matter was observed, in contrast to that obtained at 40 °C and 20 °C, which was null. The reusability, as tested through the fourth reuse cycle, resulted in a 38% reduced degradation efficiency when comparing the first and last cycle. Furthermore, the electrosynthesized catalyst presented similar degradation efficiencies in both real water and MilliQ, mainly because of the Cl2− generation at high Cl− concentrations that takes place in Cl− contaminated water.
Collapse
|
36
|
Chen K, Liang J, Xu X, Zhao L, Qiu H, Wang X, Cao X. Roles of soil active constituents in the degradation of sulfamethoxazole by biochar/persulfate: Contrasting effects of iron minerals and organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158532. [PMID: 36075408 DOI: 10.1016/j.scitotenv.2022.158532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The biochar/persulfate (BC/PS) has been extensively applied in the degradation of organic contaminants in the aqueous solutions. However, much less work has been done on the degradation of organic contaminants in soil by BC/PS, especially on the unclear roles of soil active constituents in the degradation. This study was conducted to investigate the degradation of sulfamethoxazole (SMX) in two soils through PS oxidation activated by biochar. Biochar was produced via the pyrolysis of peanut shell at 400 °C and 700 °C, which was denoted as BC400 and BC700, respectively. Two soils used were red soil and paddy soil, mainly differing in iron minerals and organic matter. Both biochar promoted SMX degradation (42.6 %-90.7 %) in two soils, compared to PS alone (20.9 %-41.7 %). In BC400/PS system, the free radicals were the dominant reactive species for SMX degradation, while the electron transfer pathway played a vital role in the SMX degradation by BC700/PS. Higher SMX degradation was observed in red soil (41.7 %-97.8 %) than that in paddy soil (20.3 %-94.8 %), which was ascribed to the promotion of iron minerals in red soil yet the inhibition of organic matter in paddy soil. Specifically, the reaction between ≡Fe(III)/≡Fe(II) and PS on the surface of iron minerals in red soil generated more SO4•- and •OH, resulting in the enhanced SMX degradation. However, the consumption of free radicals and suppression of electron transfer pathway by organic matter in paddy soil inhibited SMX degradation. As the comparative carbonaceous materials to biochar, graphite exerted no obvious degradation effect, whereas activated carbon exhibited the comparable promoting efficacy to BC700. Both biochar, especially BC700, significantly (p < 0.05) alleviated the adverse effects of PS treatment on wheat (Triticum aestivum L.) growth. Overall, this study demonstrates that biochar/persulfate was effective in SMX degradation in soil and the degradation was affected by soil iron minerals and organic matter, which should be paid more attention in the persulfate remediation of organic contaminated soils at a specific site.
Collapse
Affiliation(s)
- Kexin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinbing Wang
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
37
|
Hama Aziz KH. Heterogeneous catalytic activation of peroxydisulfate toward degradation of pharmaceuticals diclofenac and ibuprofen using scrap printed circuit board. RSC Adv 2022; 13:115-128. [PMID: 36605634 PMCID: PMC9764427 DOI: 10.1039/d2ra07263g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Pharmaceutical residues have been identified as a priority contaminant due to their toxicity to organisms and the ecosystem as representative refractory organic compounds in water. Therefore, using efficient treatment methods to remove them from wastewater has become a crucial topic of research. Advanced oxidation processes (AOPs) based on the sulfate radical have gained increased attention in recent years due to their superior performance and adaptability in the decomposition of refractory organic contaminants. In this work, scrap printed circuit boards (PCBs) were used to prepare a low-cost and efficient heterogeneous peroxydisulfate (PDS) catalytic activator via thermal treatment with an air combustion non-carbonized catalyst (NCC) and pyrolysis with a nitrogen carbonized catalyst (CC) for the removal of diclofenac (DCF) and ibuprofen (IBF) from water at circumneutral pH. The synthesized catalysts were characterized by several analytical techniques. The effects of various experimental parameters on the removal efficiency were examined. Under optimum conditions, the degradation efficiency reached 76% and 71% with NCC and 63% and 57.5% with CC within 60 min for DCF and IBP, respectively. The mineralization efficiency as measured by TOC removal reached up to 65% after 60 min treatment. The degradation kinetics for both catalysts followed the pseudo-first-order model. Results from quenching tests showed that the reactive oxidizing species (ROS), including 1O2 > SO4˙- > ˙OH, were generated mainly in the NCC/PDS and CC/PDS systems. Overall, the prepared catalysts were found to be effective and reusable for PDS activation for the removal of pharmaceutical pollutants from water. This study provided a promising, robust and efficient heterogeneous catalytic PDS activation based on the strategy of "waste-treats-waste" for the removal of pharmaceutical pollutants from water.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development Sulaimani Iraq
| |
Collapse
|
38
|
Santos A, García-Cervilla R, Checa-Fernández A, Domínguez CM, Lorenzo D. Acute Toxicity Evaluation of Lindane-Waste Contaminated Soils Treated by Surfactant-Enhanced ISCO. Molecules 2022; 27:molecules27248965. [PMID: 36558105 PMCID: PMC9786798 DOI: 10.3390/molecules27248965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The discharge of lindane wastes in unlined landfills causes groundwater and soil pollution worldwide. The liquid waste generated (a mixture of 28 chlorinated organic compounds, COCs) constitutes a dense non-aqueous phase liquid (DNAPL) that is highly persistent. Although in situ chemical oxidation (ISCO) is effective for degrading organic pollutants, the low COCs solubility requires high reaction times. Simultaneous injection of surfactants and oxidants (S-ISCO) is a promising technology to solve the limitation of ISCO treatment. The current work studies the remediation of highly polluted soil (COCs = 3682 mg/kg) obtained at the Sardas landfill (Sabiñáñigo, Spain) by ISCO and S-ISCO treatments. Special attention is paid to acute soil toxicity before and after the soil treatment. Microtox®, modified Basic Solid-Phase Test (mBSPT) and adapted Organic Solvent Sample Solubilization Test (aOSSST) were used for this scope. Persulfate (PS, 210 mM) activated by alkali (NaOH, 210 mM) was used in both ISCO and S-ISCO runs. A non-ionic and biodegradable surfactant selected in previous work, Emulse®3 (E3, 5, and 10 g/L), was applied in S-ISCO experiments. Runs were performed in soil columns filled with 50 g of polluted soil, with eight pore volumes (Pvs) of the reagents injected and 96 h between successive Pv injections. The total treatment time was 32 days. The results were compared with those corresponding without surfactant (ISCO). After remediation treatments, soils were water-washed, simulating the conditions of groundwater flux in the subsoil. The treatments applied highly reduced soil toxicity (final soil toxicity equivalent to that obtained for non-contaminated soil, mBSPT) and organic extract toxicity (reduction > 95%, aOSSST). Surfactant application did not cause an increase in the toxicity of the treated soil, highlighting its suitability for full-scale applications.
Collapse
|
39
|
Yang S, Zhang S, Xu Q, Liu J, Zhong C, Xie Z, Zhao Y. Efficient activation of persulfate by Nickel-supported cherry core biochar composite for removal of bisphenol A. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116305. [PMID: 36166862 DOI: 10.1016/j.jenvman.2022.116305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/22/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In this study, low-cost and easily obtained biochar was chosen to prepare nickel-modified biochar materials (Ni/BC) through a one-step activation pyrolysis method. Characterization with X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy proved the existence of Ni0 and NiO nanocrystals in Ni/BC catalyst. The optimal Ni0.5/BC exhibited excellent peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation efficiency toward bisphenol A (BPA) degradation. The Ni0.5/BC (0.03 g) reacted with 1.0 g L-1 PMS or PDS could completely remove 20 mg L-1 BPA in 10 min with the first-order kinetic constants (k1) of 0.322 min-1 (PMS) and 0.336 min-1 (PDS). More importantly, the composite has better structural and functional attributes for the BPA degradation with universal applicability at wide pH and temperature range, proving as a better degradation mediator with high adaptation for numerous organic pollutants. Catalytic activity decreased slightly even after 4 cycles. Based on the quenching experiment and electron paramagnetic resonance, it was found that SO4•-, •OH and 1O2 were the dominant active species in BPA degradation process. Therefore, this work not only supplies a promising catalyst for the removal of organic contaminants, but also is beneficial for the further development of alternative catalysts for sulfate radical based advanced oxidation processes.
Collapse
Affiliation(s)
- Shuangshuang Yang
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China.
| | - Qiang Xu
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Junshen Liu
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Caijuan Zhong
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Zengrun Xie
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| | - Yiqi Zhao
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai, 264025, Shandong province, China
| |
Collapse
|
40
|
Improving the quality of ammonium sulfate produced from the flue gas desulfurization process by using ammonium persulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Wang B, Li X, Wang Y. Degradation of metronidazole in water using dielectric barrier discharge synergistic with sodium persulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Wang J, Deng J, Du E, Guo H. Reevaluation of radical-induced differentiation in UV-based advanced oxidation processes (UV/hydrogen peroxide, UV/peroxydisulfate, and UV/chlorine) for metronidazole removal: Kinetics, mechanism, toxicity variation, and DFT studies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Kalogerakis GC, Boparai HK, Sleep BE. The journey of toluene to complete mineralization via heat-activated peroxydisulfate in water: intermediates analyses, CO 2 monitoring, and carbon mass balance. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129739. [PMID: 35986942 DOI: 10.1016/j.jhazmat.2022.129739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Our study has thoroughly investigated the complete mineralization of toluene in water via heat-activated peroxydisulfate (PDS) by: (1) monitoring concentrations/peak areas of various intermediates and CO2 throughout the reaction period and (2) identifying water-soluble and methanol-soluble intermediates, including trimers, dimers, and organo-sulfur compounds, via non-target screening using high-resolution mass spectrometry. Increased temperature and PDS dosage enhanced toluene removal/mineralization kinetics and increased the rate/extent of benzaldehyde formation and its further transformation. Artificial groundwater and phosphate buffer minimally impacted toluene removal but significantly decreased benzaldehyde formation, indicating a shift in transformation pathways. The stoichiometric PDS dose (18 mM at 40 °C) was adequate to completely mineralize toluene (1 mM), with < 10% PDS needed to transform toluene to intermediates. Toluene transformation to intermediates occurred in 47 h (kobs,toluene = 0.594 h-1) whereas 564 h were required for complete mineralization (kobs,CO2 = 0.0038 h-1). O2 accumulated once mineralization neared completion. A carbon mass balance, including quantification of nine intermediates and CO2 throughout the transformation period, showed that unquantified/unknown intermediates (including yellowish-white precipitates) reached as high as 80% of total carbon before transformation to CO2. Possible toluene transformation pathways via hydroxylation, sulfate addition, and oxidative coupling are proposed.
Collapse
Affiliation(s)
- Georgina C Kalogerakis
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto M5S 1A4, ON, Canada
| | - Hardiljeet K Boparai
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto M5S 1A4, ON, Canada
| | - Brent E Sleep
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto M5S 1A4, ON, Canada.
| |
Collapse
|