1
|
Wang W, He H, Zhang P, Yan J, He H, Chen X, Wang H, Zhu W, Cui Z, Yuan X. Industrial-scale aerobic composting with the addition of Paenibacillus mucilaginosus: Improving product quality and removing antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124187. [PMID: 39929121 DOI: 10.1016/j.jenvman.2025.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
This study comprehensively investigated the effects of adding Paenibacillus mucilaginosus to industrial-scale compost on compost quality, microbial community dynamics, and antibiotic resistance genes (ARGs). The results of this investigation unequivocally demonstrated that the inclusion of Paenibacillus mucilaginosus prolonged the thermophilic phase of composting, thereby enhancing organic matter decomposition and facilitating nitrogen fraction conversion. Moreover, the inoculation of Paenibacillus mucilaginosus altered the microbial community structure during the rapid heating and thermophilic stages. Significantly, the removal rates of tetM, tetR, and sul1 were 99.84%, 99.68%, and 97.61%, respectively, with inoculation increasing these rates by 8.94%, 9.85%, and 9.34%, respectively, compared to the control (P < 0.05). These findings highlighted the efficacy of incorporating Paenibacillus mucilaginosus into industrial-scale compost as a potent strategy to enhance nutrient transformation processes and mitigate ARG activity.
Collapse
Affiliation(s)
- Weiwei Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huiban He
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jing Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Haoxing He
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaotian Chen
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zongjun Cui
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xufeng Yuan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Chen Y, Liu Y, Zhao C, Ma J, Guo J. Antibiotic resistance gene pollution in poultry farming environments and approaches for mitigation: A system review. Poult Sci 2025; 104:104858. [PMID: 39874786 PMCID: PMC11808494 DOI: 10.1016/j.psj.2025.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
Antibiotic resistance genes (ARG) pollution in poultry farming environments has become increasingly critical, primarily driven by the widespread use of antibiotics in animal husbandry. Prolonged antibiotic use has led to the emergence of ARGs and antibiotic-resistant bacteria, spreading via horizontal and vertical gene transfer. The complexity of ARG pollution in poultry farming arises from the unique farming practices, physiological characteristics of poultry, and manure management methods, with manure, wastewater, and air serving as significant vectors for ARG dissemination. Current research indicates that the spread of ARGs poses a significant threat to ecosystems and public health. In response to this growing concern, this review outlines the sources, distribution characteristics, and transmission mechanisms of ARGs in poultry farming environments. It also evaluates the efficacy of existing waste treatment technologies in mitigating ARG contamination. The review proposes several strategies to control ARG dissemination effectively, including reducing antibiotic usage, improving farming practices, optimizing waste management, and strengthening regulatory oversight. It also highlights the need for further research to address existing knowledge gaps and explore more efficient pollution control technologies and management measures. This review aims to provide theoretical support for protecting the environment and public health in the context of poultry farming.
Collapse
Affiliation(s)
- Yun Chen
- College of Biology and Agriculture, Shaoguan University, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, 512005, Guangdong, PR China
| | - Yujia Liu
- College of Biology and Agriculture, Shaoguan University, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, 512005, Guangdong, PR China
| | - Cuiyan Zhao
- College of Biology and Agriculture, Shaoguan University, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, 512005, Guangdong, PR China
| | - Jinge Ma
- College of life science, Nanchang normal university, Nanchang, 330032, Jiangxi, PR China
| | - Jing Guo
- College of Biology and Agriculture, Shaoguan University, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan, 512005, Guangdong, PR China.
| |
Collapse
|
3
|
Cortés P, Pokrant E, Yévenes K, Maddaleno A, Flores A, Vargas MB, Trincado L, Maturana M, Lapierre L, Cornejo J. Antimicrobial Residues in Poultry Litter: Assessing the Association of Antimicrobial Persistence with Resistant Escherichia coli Strains. Antibiotics (Basel) 2025; 14:89. [PMID: 39858374 PMCID: PMC11762688 DOI: 10.3390/antibiotics14010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Objective: We set out to evaluate the persistence of sulfachloropyridazine, oxytetracycline, and enrofloxacin in broiler chicken litter following therapeutic oral treatment and its association with the isolation of Escherichia coli resistant to these antimicrobials. Methods: Forty broiler chickens were raised under controlled conditions and divided into three experimental groups, each treated with a different antimicrobial, in addition to an untreated/control group. Litter samples were collected post treatment, analyzed by UPLC-MS/MS, and processed for the isolation of E. coli. The antimicrobial susceptibility of E. coli was assessed using the Kirby-Bauer disk diffusion method. Results: Chemical analysis detected concentrations of antimicrobials throughout post treatment, reaching maxima of 42,910.14 μg kg-1, 92,712 μg kg-1, and 9567 μg kg-1 for sulfachloropyridazine, oxytetracycline plus 4-epi-oxytetracycline, and enrofloxacin plus ciprofloxacin, respectively. It was estimated that the concentrations of sulfachloropyridazine, oxytetracycline, and enrofloxacin would persist in broiler litter for 61, 244, and 514 days, respectively. A very strong association was observed between the presence of antimicrobial residues and the antimicrobial resistance of E. coli (p-value < 0.0001, and Cramer's coefficient of 0.47), and an independence between the level of residue concentration and susceptibility (p-value 0.5262). Conclusions: The persistence of antimicrobial residues contributes to the selection of resistant bacteria, regardless of persistent antimicrobial concentrations. These findings highlight the need for stricter regulations on poultry litter management, including residue thresholds and resistance monitoring, to minimize environmental and public health risks. Proper treatment of poultry litter is essential to ensure its sustainable and safe re-use in agricultural systems.
Collapse
Affiliation(s)
- Paula Cortés
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (P.C.); (E.P.); (A.M.); (A.F.); (L.T.); (M.M.)
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (K.Y.); (M.B.V.)
| | - Ekaterina Pokrant
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (P.C.); (E.P.); (A.M.); (A.F.); (L.T.); (M.M.)
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile;
| | - Karina Yévenes
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (K.Y.); (M.B.V.)
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile;
| | - Aldo Maddaleno
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (P.C.); (E.P.); (A.M.); (A.F.); (L.T.); (M.M.)
| | - Andrés Flores
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (P.C.); (E.P.); (A.M.); (A.F.); (L.T.); (M.M.)
| | - María Belén Vargas
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (K.Y.); (M.B.V.)
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile;
| | - Lina Trincado
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (P.C.); (E.P.); (A.M.); (A.F.); (L.T.); (M.M.)
- Doctorate Program of Forestry, Agriculture, and Veterinary Sciences (DCSAV), University of Chile, Av. Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (K.Y.); (M.B.V.)
| | - Matías Maturana
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (P.C.); (E.P.); (A.M.); (A.F.); (L.T.); (M.M.)
| | - Lisette Lapierre
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile;
| | - Javiera Cornejo
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile; (P.C.); (E.P.); (A.M.); (A.F.); (L.T.); (M.M.)
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Avenida Santa Rosa 11735, La Pintana, Santiago 8820808, Chile;
| |
Collapse
|
4
|
Ma J, Yang W, Li S, Yang Z, Qiao C, Liu D, Wang M. Comprehensive effects of tea branch biochar on antibiotic resistance profiles and C/N/S cycling in the compost microbiota of animal manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177457. [PMID: 39536864 DOI: 10.1016/j.scitotenv.2024.177457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The comprehensive effects of exogenous additives on microbial-driven antibiotic resistance profiles and C/N/S conversion in animal manure composting remains uncertain. This study examined whether tea branch biochar could regulate the microflora involved in antibiotic resistance and C/N/S conversion during pig and chicken manure composting. Compared with the control treatment, biochar addition prolonged the high-temperature period (>55 °C) for 1-2 days and raised the maximum temperature in chicken manure composting. Moreover, biochar addition reduced the prevalence of antibiotic resistance genes (ARGs) in both pig and chicken manure composting by up to 30 %, targeting various types of ARGs such as peptide, phenicol, and diaminopyrimidines. Additionally, the compost microbiota exhibited the overlaps of C/N/S conversion functions. Luteimonas (Xanthomonadaceae) was identified as a dominant bacterium responsible for C/N/S conversion in both pig and chicken manure composting, while also acting as a potential ARG carrier. Thus, Luteimonas is crucial in shaping antibiotic resistance profiles and C/N/S cycling in animal manure composting, indicating its role as a keystone genus. These findings suggest that tea branch biochar can mitigate the spread of ARGs from animal manure, as well as enhance nutrient cycling and compost quality.
Collapse
Affiliation(s)
- Jiawei Ma
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenyan Yang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuai Li
- Key Laboratory of Soil Pollution Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhenyu Yang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chen Qiao
- Key Laboratory of Soil Pollution Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dan Liu
- Key Laboratory of Soil Pollution Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Mei Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
5
|
Cai T, Xia M, Yuan W, Ming Y, Zhang Q. Bioconversion of sulfamethazine-contaminated chicken manure by black soldier fly larvae: Effects on antibiotic resistance genes and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123206. [PMID: 39492136 DOI: 10.1016/j.jenvman.2024.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Sulfamethazine (SM2), a widely detected antibiotic in livestock manure, poses environmental and health risks due to its persistence and the proliferation of antibiotic resistance genes (ARGs). In this study, we investigated the degradation of SM2 and the elimination of sulfonamide ARGs (sul1 and sul2) in chicken manure contaminated with varying concentration of SM2 by black soldier fly larvae (BSFL). Quantitative PCR and 16S rRNA gene sequencing were employed to monitor changes in sulfa ARGs and microbial community composition within both the larvae gut and chicken manure. During the 12-day test period, BSFL exhibited strong tolerance to SM2, significantly reducing SM2 concentrations by 80.54%-92.22% across different treatment groups. Concurrently, the abundance of sul1 and sul2 decreased by 79.27% and 79.92% in chicken manure, respectively. Additionally, microbial genera such as Firmicutes (47.18-65%) and Bacillus (9.32-10.25%), which were enriched in both the BSFL gut and chicken manure, were identified as potential contributors to SM2 degradation. These findings provide a promising biotechnological strategy for mitigating antibiotic contamination in livestock manure.
Collapse
Affiliation(s)
- Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Min Xia
- Shanghai Chengtou Laogang Base Management Corporation, Nanbin Road, 201302, Shanghai, China
| | - Wei Yuan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Yuanbo Ming
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Road, 200062, Shanghai, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, 200062, Shanghai, China.
| |
Collapse
|
6
|
Liu K, Wang M, Zhang Y, Fang C, Zhang R, Fang L, Sun J, Liu Y, Liao X. Distribution of antibiotic resistance genes and their pathogen hosts in duck farm environments in south-east coastal China. Appl Microbiol Biotechnol 2024; 108:136. [PMID: 38229327 PMCID: PMC10789667 DOI: 10.1007/s00253-023-12842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 01/18/2024]
Abstract
Livestock farms are major reservoirs of antibiotic resistance genes (ARGs) that are discharged into the environment. However, the abundance, diversity, and transmission of ARGs in duck farms and its impact on surrounding environments remain to be further explored. Therefore, the characteristics of ARGs and their bacterial hosts from duck farms and surrounding environment were investigated by using metagenomic sequencing. Eighteen ARG types which consist of 823 subtypes were identified and the majority conferred resistance to multidrug, tetracyclines, aminoglycosides, chloramphenicols, MLS, and sulfonamides. The floR gene was the most abundant subtype, followed by sul1, tetM, sul2, and tetL. ARG abundance in fecal sample was significantly higher than soil and water sample. Our results also lead to a hypothesis that Shandong province have been the most contaminated by ARGs from duck farm compared with other four provinces. PcoA results showed that the composition of ARG subtypes in water and soil samples was similar, but there were significant differences between water and feces samples. However, the composition of ARG subtypes were similar between samples from five provinces. Bacterial hosts of ARG subtypes were taxonomically assigned to eight phyla that were dominated by the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. In addition, some human bacterial pathogens could be enriched in duck feces, including Enterococcus faecium, Acinetobacter baumannii, and Staphylococcus aureus, and even serve as the carrier of ARGs. The combined results indicate that a comprehensive overview of the diversity and abundance of ARGs, and strong association between ARGs and bacterial community shift proposed, and benefit effective measures to improve safety of antibiotics use in livestock and poultry farming. KEY POINTS: • ARG distribution was widespread in the duck farms and surroundings environment • ARG abundance on the duck farms was significantly higher than in soil and water • Human bacterial pathogens may serve as the vectors for ARGs.
Collapse
Affiliation(s)
- Kaidi Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- School of Agricultural Science and Engineering, Liaocheng University, No.1 Hunan Road, Liaocheng, 252000, Shandong, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Minge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- School of Agricultural Science and Engineering, Liaocheng University, No.1 Hunan Road, Liaocheng, 252000, Shandong, China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yin Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Chang Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Rongmin Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, People's Republic of China.
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
8
|
Chen JY, Niu SH, Li HY, Liao XD, Xing SC. Multiomics analysis of the effects of manure-borne doxycycline combined with oversized fiber microplastics on pak choi growth and the risk of antibiotic resistance gene transmission. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134931. [PMID: 38889467 DOI: 10.1016/j.jhazmat.2024.134931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
In this study, oversized microplastics (OMPs) were intentionally introduced into soil containing manure-borne doxycycline (DOX). This strategic approach was used to systematically examine the effects of combined OMP and DOX pollution on the growth of pak choi, analyze alterations in soil environmental metabolites, and explore the potential migration of antibiotic resistance genes (ARGs). The results revealed a more pronounced impact of DOX than of OMPs. Slender-fiber OMPs (SF OMPs) had a more substantial influence on the growth of pak choi than did coarse-fiber OMPs (CF OMPs). Conversely, CF OMPs had a more significant effect on the migration of ARGs within the system. When DOX was combined with OMPs, the negative effects of DOX on pak choi growth were mitigated through the synthesis of indole through the adjustment of carbon metabolism and amino acid metabolism in pak choi roots. In this process, Pseudohongiellaceae and Xanthomonadaceae were key bacteria. During the migration of ARGs, the potential host bacterium Limnobacter should be considered. Additionally, the majority of potential host bacteria in the pak choi endophytic environment were associated with tetG. This study provides insights into the intricate interplay among DOX, OMPs, ARGs, plant growth, soil metabolism, and the microbiome.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hai-Yang Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
9
|
Ma W, An B, Xu X, Huo M, Mi K, Tian X, Kou Z, Tang A, Cheng G, Huang L. Ceftiofur in swine manure contributes to reducing pathogens and antibiotic resistance genes during composting. ENVIRONMENTAL RESEARCH 2024; 252:119033. [PMID: 38685300 DOI: 10.1016/j.envres.2024.119033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Aerobic composting is a common way for the disposal of feces produced in animal husbandry, and can reduce the release of antibiotic resistance genes (ARGs) from feces into the environment. In this study, we collected samples from two distinct treatments of swine manure compost with and without ceftiofur (CEF), and identified the ARGs, mobile genetic elements (MGEs), and bacterial community by metagenomic sequencing. The impacts of CEF on the bacterial community composition and fate of ARGs and MGEs were investigated. With increasing composting temperature and pH, the concentration of CEF in the manure decreased rapidly, with a degradation half-life of 1.12 d and a 100% removal rate after 10 d of aerobic composting. Metagenomics demonstrated that CEF in the manure might inhibit the growth of Firmicutes and Proteobacteria, thereby reducing some ARGs and MGEs hosted by these two bacteria, which was further confirmed by the variations of ARGs and MGEs. A further redundancy analysis suggested that pH and temperature are key environmental factors affecting ARG removal during composting, and intI1 and bacterial communities also have significant influence on ARG abundance. These results are of great significance for promoting the removal of some ARGs from animal manure by controlling some key environmental factors and the type of antibiotics used in animals.
Collapse
Affiliation(s)
- Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Boyu An
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Ziyan Kou
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Aoran Tang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Guyue Cheng
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
10
|
Yu X, Lv Y, Wang Q, Wang W, Wang Z, Wu N, Liu X, Wang X, Xu X. Deciphering and predicting changes in antibiotic resistance genes during pig manure aerobic composting via machine learning model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33610-33622. [PMID: 38689043 DOI: 10.1007/s11356-024-33087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Livestock manure is one of the most important pools of antibiotic resistance genes (ARGs) in the environment. Aerobic composting can effectively reduce the spread of antibiotic resistance risk in livestock manure. Understanding the effect of aerobic composting process parameters on manure-sourced ARGs is important to control their spreading risk. In this study, the effects of process parameters on ARGs during aerobic composting of pig manure were explored through data mining based on 191 valid data collected from literature. Machine learning (ML) models (XGBoost and Random Forest) were utilized to predict the rate of ARGs changes during pig manure composting. The model evaluation index of the XGBoost model (R2 = 0.651) was higher than that of the Random Forest (R2 = 0.490), indicating that XGBoost had better prediction performance. Feature importance was further calculated for the XGBoost model, and the XGBoost black box model was interpreted by Shapley additive explanations analysis. Results indicated that the influencing factors on the ARGs variation in pig manure were sequentially divided into thermophilic period, total composting period, composting real time, and thermophilic stage average temperature. The findings gave an insight into the application of ML models to predict and decipher the ARG changes during manure composting and provided suggestions for better composting manipulation and optimization of process parameters.
Collapse
Affiliation(s)
- Xiaohui Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Yang Lv
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Qing Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Wenhao Wang
- College of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zhiqiang Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Nan Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China.
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China.
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaobo Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xiaoyan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, China
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, 300392, China
| |
Collapse
|
11
|
Wen X, Xu J, Wang Y, Yang X, Peng G, Li S, Ma B, Zou Y, Liao X, Wang Y, Worrich A, Wu Y. Community coalescence and plant host filtering determine the spread of tetracycline resistance genes from pig manure into the microbiome continuum of the soil-plant system. Microbiol Res 2024; 284:127734. [PMID: 38670037 DOI: 10.1016/j.micres.2024.127734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The spread of livestock manure-borne antibiotic resistance genes (ARGs) into agroecosystems through manure application poses a potential threat to human health. However, there is still a knowledge gap concerning ARG dissemination in coalescing manure, soil and plant microbiomes. Here, we examined the fate of tetracycline resistance genes (TRGs) originating from pig manure microbiomes and spread in the soil-A thaliana system and explored the effects of microbial functions on TRGs spread at different interfaces. Our results indicate that the TRGs abundances in all microbiome continuum of the soil-A. thaliana system were significantly increased with the application of a living manure microbiome, although the addition of manure with both an active and inactive microbiome caused a shift in the microbial community composition. This was attributed to the increasing relative abundances of tetA, tetL, tetM, tetO, tetW and tolC in the system. The application of living manure with DOX residues resulted in the highest relative abundance of total TRGs (3.30×10-3 copies/16S rRNA gene copies) in the rhizosphere soil samples. Community coalescence of the manure and soil microbiomes increased the abundance of Firmicutes in the soil and root microbiome, which directly explains the increase in TRG abundance observed in these interfaces. In contrast, the leaf microbiome differed markedly from that of the remaining samples, indicating strong plant host filtering effects on Firmicutes and TRGs from pig manure. The random forest machine learning model revealed microbial functions and their significant positive correlation with TRG abundance in the microbiome continuum of the system. Our findings revealed that community coalescence is the main driver of TRG spread from manure to the soil and root microbiomes. Plant host filtering effects play a crucial role in allowing certain microbial groups to occupy ecological niches in the leaves, thereby limiting the establishment of manure-borne TRGs in aboveground plant tissues.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yiting Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Guoliang Peng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Siming Li
- Shimadzu (China) Co., LTD. Guangzhou Branch, Guangzhou 510656, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany.
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong 525000, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Wen X, Chen M, Ma B, Xu J, Zhu T, Zou Y, Liao X, Wang Y, Worrich A, Wu Y. Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:76-85. [PMID: 38290350 DOI: 10.1016/j.wasman.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging pollutants that enter the farm and surrounding environment via the manure of antibiotic-treated animals. Pretreatment of livestock manure by composting decreases ARGs abundance, but how antibiotic residues affect ARGs removal efficiency remains poorly understood. Here, we explored the fate of the resistome under different doxycycline residue levels during aerobic swine manure composting. Metagenomic sequencing showed that the presence of high levels of doxycycline generally had a higher abundance of tetracycline ARGs, and their dominant host bacteria of Firmicutes, especially Clostridium and Streptococcus, also had limited elimination in composting under high levels of doxycycline stress. Moreover, high levels of doxycycline impaired the removal of the total ARGs number in finished composts, with a removal rate of 51.74 % compared to 63.70 % and 71.52 % for the control and low-level doxycycline manure, respectively. Horizontal gene transfer and strengthened correlations among the bacterial community fostered ARGs preservation at high doxycycline levels during composting. In addition, ARGs carried by both plasmids and chromosomes, such as multidrug ARGs, showed wide host characteristics and rebound during compost maturation. Compared with chromosomes, a greater variety of ARGs on plasmids suggested that the majority of ARGs were characterized by horizontal mobility during composting, and the cross-host characteristics of ARGs during composting deserve further attention. This study provided deep insight into the fate of ARGs under residual antibiotic stress during manure composting and reminded the associated risk for environmental and public health.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Song T, Zhang F, Chen Q, Tao Y, Chang W, Xia W, Ding W, Jin J. Acceleration of the biodegradation of cationic polyacrylamide by the coupling effect of thermophilic microorganisms and high temperature in hyperthermophilic composting. Bioprocess Biosyst Eng 2024; 47:403-415. [PMID: 38421394 DOI: 10.1007/s00449-024-02972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
As a flocculant of sewage sludge, cationic polyacrylamide (CPAM) enters the environment with sludge and exists for a long time, posing serious threats to the environment. Due to the environmental friendliness and high efficiency in the process of organic solid waste treatment, hyperthermophilic composting (HTC) has received increasing attention. However, it is still unclear whether the HTC process can effectively remove CPAM from sludge. In this study, the effects of HTC and conventional thermophilic composting (CTC) on CPAM in sludge were compared and analyzed. At the end of HTC and CTC, the concentrations of CPAM were 278.96 mg kg-1 and 533.89 mg kg-1, respectively, and the removal rates were 72.17% and 46.61%, respectively. The coupling effect of thermophilic microorganisms and high temperature improved the efficiency of HTC and accelerated the biodegradation of CPAM. The diversity and composition of microbial community changed dramatically during HTC. Geobacillus, Thermobispora, Pseudomonas, Brevundimonas, and Bacillus were the dominant bacteria responsible for the high HTC efficiency. To our knowledge, this is the first study in which CPAM-containing sludge is treated using HTC. The ideal performance and the presence of key microorganisms revealed that HTC is feasible for the treatment of CPAM-containing sludge.
Collapse
Affiliation(s)
- Tianwen Song
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Fan Zhang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Qu Chen
- Medical College, Qingdao Binhai University, Qingdao, 266555, China
| | - Yinglu Tao
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Wei Chang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Wenxiang Xia
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Wande Ding
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jiafeng Jin
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, China
| |
Collapse
|
14
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
15
|
Wang Z, Zhang M, Li J, Wang J, Sun G, Yang G, Li J. Effect of biochar with various pore characteristics on heavy metal passivation and microbiota development during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120048. [PMID: 38246105 DOI: 10.1016/j.jenvman.2024.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Understanding the porosity of biochar (BC) that promotes the heavy metal (HM) passivation during composting can contribute to the sustainable management of pig manure (PM). The current work aimed to explore the influence of BC with varying pore sizes on the physicochemical properties and morphological changes of HMs (including Zn, Cu, Cr, As, and Hg), and microbiota development during PM composting. The various pore sizes of BC were generated by pyrolyzing pine wood at 400 (T1), 500 (T2), 600 (T3) and 700 (T4) °C, respectively. The results revealed a positive correlation between specific surface area of BC and pyrolysis temperature. BC addition contributed to a significantly extended compost warming rate and duration of high-temperature period, as well as HM passivation, reflected in the decrease in Exc-Zn (63-34%) and Red-Cu (28-13%) content, and the conversion of Oxi-Cr (29-21%) and Red-Hg (16-5%) to more stable forms. Moreover, BC at T4 exhibited the best effect on Zn and Cu passivation due to the highest specific surface area (380.03 m2/g). In addition to its impact on HM passivation, BC addition improved the microbial environment during PM composting, leading to enhanced microbial diversity and richness. Notably, Chloroflexi and Bacteroidota played key roles in promoting the transformation of Exc-Cu and Red-Hg into stable forms. This phenomenon further stimulated the enhanced decomposition of organic matter (OM) when BC prepared at 600-700 °C was added. Therefore, it can be concluded that the regulation of BC porosity is an effective strategy to improve HM passivation and the overall effectiveness of PM composting.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ju Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiamin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China
| | - Guotao Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China.
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
16
|
Bao H, Chen Z, Wen Q, Wu Y, Fu Q. Effects of oxytetracycline on variation in intracellular and extracellular antibiotic resistance genes during swine manure composting. BIORESOURCE TECHNOLOGY 2024; 393:130127. [PMID: 38036151 DOI: 10.1016/j.biortech.2023.130127] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
This research aimed to investigate the alterations in extracellular (eARGs) and intracellular (iARGs) antibiotic resistance genes in response to oxytetracycline (OTC), and unravel the dissemination mechanism of ARGs during composting. The findings revealed both low (L-OTC) and high contents (H-OTC) of OTC significantly enhanced absolute abundance (AA) of iARGs (p < 0.05), compared to CK (no OTC). Composting proved to be a proficient strategy for removing eARGs, while AA of eARGs was significantly enhanced in H-OTC (p < 0.05). OTC resulted in an increase in AA of mobile genetic elements (MGEs), ATP levels, antioxidant and DNA repair enzymes in bacteria in compost product. Structural equation model further demonstrated that OTC promoted bacterial DNA repair and antioxidant enzyme activities, altered bacterial community and enhanced MGEs abundance, thereby facilitating iARGs dissemination. This study highlights OTC can increase eARGs and iARGs abundance, underscoring the need for appropriate countermeasures to mitigate potential hazards.
Collapse
Affiliation(s)
- Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
17
|
Feng M, Liu Y, Yang L, Li Z. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - A review. BIORESOURCE TECHNOLOGY 2023; 390:129861. [PMID: 37863331 DOI: 10.1016/j.biortech.2023.129861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
Fate of antibiotics and antibiotic resistance genes (ARGs) during composting of antibiotic fermentation waste (AFW) is a major concern. This review article focuses on recent literature published on this subject. The key findings are that antibiotics can be removed effectively during AFW composting, with higher temperatures, appropriate bulking agents, and suitable pretreatments improving their degradation. ARGs dynamics during composting are related to bacteria and mobile genetic elements (MGEs). Higher temperatures, suitable bulking agents and an appropriate C/N ratio (30:1) lead to more efficient removal of ARGs/MGEs by shaping the bacterial composition. Keeping materials dry (moisture less than 30%) and maintaining pH stable around 7.5 after composting could inhibit the rebound of ARGs. Overall, safer utilization of AFW can be realized by optimizing composting conditions. However, further removal of antibiotics and ARGs at low levels, degradation mechanism of antibiotics, and spread mechanism of ARGs during AFW composting require further investigation.
Collapse
Affiliation(s)
- Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lie Yang
- Wuhan University of Technology, School of Resources & Environmental Engineering, Wuhan 430070, China
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Shan X, Liu C, Song L, Huan H, Chen H. Risk characteristics of resistome coalescence in irrigated soils and effect of natural storage of irrigation materials on risk mitigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122575. [PMID: 37742860 DOI: 10.1016/j.envpol.2023.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Irrigation and fertilization are the routinely agricultural practices but also cause resistome coalescence, by which the entire microbiomes from irrigation materials invade soil microbial community, to transfer antibiotic resistance genes (ARGs) in the coalesced soils. Although studies have reported the effect of irrigation or fertilization on the prevalence and spread of ARGs in soils, risk characteristics of resistome coalescence in irrigation system remain to be demonstrated and few has shown whether natural storage of irrigation materials will reduce resistance risks. To fill the gaps, two microscopic experiments were conducted for deeply exploring resistance risks in the soils irrigated with wastewater and manure fertilizer from a perspective of community coalescence by metagenomic analysis, and to reveal the effect of natural storage of irrigation materials on the reduction of resistance risks in the coalesced soils. Results showed irrigation and coalescence significantly increased the abundance and diversity of ARGs in the soils, and introduced some emerging resistance genes into the coalesced community, including mcr-type, tetX, qacB, and an array of genes conferring resistance to carbapenem. Procrustes analysis demonstrated microbial community was significantly correlated with the ARGs in coalesced soils, and variance partitioning analysis quantified its dominant role on shaping resistome profile in the environment. Besides ARGs, abundant and diverse mobile genetic elements (MGEs) were also identified in the coalesced soils and co-existed on the ARG-carrying contigs, implying potential transfer risk of ARGs in the irrigation system. Further, the analysis of metagenome-assembled genomes (MAGs) confirmed the risk by recovering 358 ARGs-carrying MAGs and identifying the resistant bacteria that co-carried multiple ARGs and MGEs. As expected, the natural storage of irrigation water and manure fertilizer reduced about 27%-54% of ARGs, MGEs and virulence factors in the coalesced soils, thus caused the soils to move towards lower resistance risks to a certain extent.
Collapse
Affiliation(s)
- Xin Shan
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Chang Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Liuting Song
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Huan Huan
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
19
|
Wang Q, Tan L, Sun S, Lu X, Luo Y. Land-derived wastewater facilitates antibiotic resistance contamination in marine sediment of semi-closed bay: A case study in Jiaozhou Bay, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117870. [PMID: 37084540 DOI: 10.1016/j.jenvman.2023.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The emergence of antibiotic resistance is a severe threat to public health. There are few studies on the effects of sewage discharge on antibiotics and antibiotic resistance genes (ARGs) contamination in Jiaozhou Bay sediment. Herein, a total of 281 ARG subtypes, 10 mobile genetic elements (MGEs), 10 antibiotics and bacterial communities in marine sediments from Jiaozhou Bay were characterized. Similar bacterial community structures and ARG profiles were identified between the various sampling sites inside the bay, which were both dominated by multidrug and (fluoro)quinolone resistance genes and harbored lower relative abundances of ARGs than those in the sampling sites near the bay exit. Compared with antibiotics and MGEs, bacterial community composition was a more important driver of ARG diversity and geographic distribution. The abundance of pathogens carrying genetic information increased dramatically in southern Jiaozhou Bay is affected by sewage discharge, which indicating that wastewater discharge facilitated ARG contamination of marine sediments. This study highlights the risk of disseminating antibiotic resistance-influencing factors from treated wastewater discharge into marine environment there is an urgent need to optimize or improve wastewater treatment processes to enhance the removal of antibiotics and ARGs. This study has necessary implications for filling the gap in information on antibiotic resistance in Jiaozhou Bay and developing future pollution regulation and control measures.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China; College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Xueqiang Lu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
20
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Yang J, Xiang J, Xie Y, Yu K, Li P, Yew-Hoong Gin K, He Y. Antibiotic resistome associated with influencing factors in industrial-scale organic waste aerobic composting plants. BIORESOURCE TECHNOLOGY 2023:129354. [PMID: 37336453 DOI: 10.1016/j.biortech.2023.129354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
This study investigated the fate of antibiotic resistance genes (ARGs) and bacterial evolution in six industrial-scale organic wastes aerobic composting plants and identified key factors driving ARGs dynamics. A total of 226 ARGs and 46 mobile genetic elements (MGEs), mainly resistant to aminoglycoside and MLSB, were detected by high-throughput qPCR. Briefly, aerobic composting showed good performance in reducing the diversity and abundance of ARGs, where the total absolute abundance was reduced by 88.34%-97.08% except for cattle manures. Rapid composting may lead to a rebound of ARGs due to long-term storage compared to traditional composting. Hub ARGs and bacterial genera were screened out by co-occurrence patterns. As the dominant phyla in composting, the main potential hosts of ARGs were Firmicutes, Bacteroidota and Proteobacteria. Structural equation model indicated that MGEs and heavy metals were key factors affecting ARGs dynamics. In addition, nutrients and bacterial α-diversity can indirectly influence ARGs by affecting MGEs.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jinyi Xiang
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - Yu Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
22
|
Evaluation of bacterial diversity in a swine manure composting system contaminated with veterinary antibiotics (VAs). Arch Microbiol 2023; 205:85. [PMID: 36757625 DOI: 10.1007/s00203-022-03382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/18/2022] [Accepted: 12/18/2022] [Indexed: 02/10/2023]
Abstract
Composting has become an alternative for the treatment of organic effluents, due to its low cost, easy handling, and a great capacity for treating swine manure. As it is a biological process, many microorganisms are involved during the composting process and act in the degradation of organic matter and nutrients and also have the ability to degrade contaminants and accelerate the transformations during composting. The objective of this work was to identify microorganisms present in the swine effluent composting system, under the contamination by most used veterinary drugs in Brazil. The composting took place for 150 days, there was an addition of 200 L of manure (these 25 L initially contaminated with 17 antibiotics) in 25 kg of eucalyptus wood shavings. The microorganisms were measured at times (0 until 150 days) and were identified by the V3-V4 regions of the 16S rRNA for Bacteria, by means of next-generation sequencing (NSG). The results show seven different bacterial phyla (Proteobacteria, Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Spirochaetota and Tenericutes) and 70 bacterial genera (more than 1% significance), of which the most significant ones were Pseudomonas, Sphingobacterium, Devosia, Brucella, Flavisolibacter, Sphingomonas and Nitratireductor. The genus Brucella was found during mesophilic and thermophilic phases, and this genus has not yet been reported an in article involving composting process. With the results obtained, the potential for adaptation of the bacterial community was observed, being under the influence of antibiotics for veterinary use.
Collapse
|
23
|
Wang Y, Li Y, Li H, Zhou J, Wang T. Seasonal dissemination of antibiotic resistome from livestock farms to surrounding soil and air: Bacterial hosts and risks for human exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116638. [PMID: 36335698 DOI: 10.1016/j.jenvman.2022.116638] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Feces in livestock farms is a reservoir of antibiotic resistance genes (ARGs), which can disseminate into surrounding soil and air, bringing risks to human health. In this study, seasonal dissemination of ARGs in a livestock farm and implications for human exposure was explored. The experimental results showed that ARGs abundance basically ranked as feces > soil > air, and significant seasonal dependence was observed. The total ARGs in pig feces was relatively higher in autumn (109.7 copies g-1) and winter (1010.0 copies g-1), and lower in summer (105.0 copies g-1). Similarly, the lowest total ARGs in soil and air were also observed in summer. There were correlations among ARGs, integron intI1, and bacterial community. Total organic carbon was an important factor affecting ARGs distribution in the feces, and pH and moisture content significantly affected soil ARGs. The daily intakes of integron intI1 and ARGs from air were 10°.5 copies h-1 and 102.3 copies h-1 for human exposure, respectively. Pseudomonas was a potential pathogenic host of blaTEM-1 in feces, Pseudomonas and Acinetobacter were potential pathogenic hosts of multiple ARGs in soil, while ARGs in air did not migrate into pathogens.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yingwei Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Hu Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
24
|
Kang J, Liu Y, Chen X, Xu F, Xiong W, Li X. Shifts of Antibiotic Resistomes in Soil Following Amendments of Antibiotics-Contained Dairy Manure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10804. [PMID: 36078515 PMCID: PMC9517759 DOI: 10.3390/ijerph191710804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Dairy manure is a nutrition source for cropland soils and also simultaneously serves as a contamination source of antibiotic resistance genes (ARGs). In this study, five classes of antibiotics including aminoglycosides, beta-lactams, macrolides, sulfonamides, and tetracyclines, were spiked in dairy manure and incubated with soil for 60 days. The high throughput qPCR and 16S rRNA amplicon sequencing were used to detect temporal shifts of the soil antibiotic resistomes and bacterial community. Results indicated dairy manure application increased the ARG abundance by 0.5-3.7 times and subtype numbers by 2.7-3.7 times and changed the microbial community structure in soils. These effects were limited to the early incubation stage. Selection pressure was observed after the addition of sulfonamides. Bacterial communities played an important role in the shifts of ARG profiles and accounted for 44.9% of the resistome variation. The incubation period, but not the different antibiotic treatments, has a strong impact on the bacteria community. Firmicutes and Bacteroidetes were the dominant bacterial hosts for individual ARGs. This study advanced our understanding of the effect of dairy manure and antibiotics on the antibiotic resistome in soils and provided a reference for controlling ARG dissemination from dairy farms to the environment.
Collapse
Affiliation(s)
- Jijun Kang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiming Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojie Chen
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Xu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutic Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiubo Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
25
|
Wang F, Fang Y, Wang L, Xiang H, Chen G, Chang X, Liu D, He X, Zhong R. Effects of residual monensin in livestock manure on nitrogen transformation and microbial community during "crop straw feeding-substrate fermentation-mushroom cultivation" recycling system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:333-344. [PMID: 35780758 DOI: 10.1016/j.wasman.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Although crop-livestock integration recycling systems improve nitrogen (N) utilization in agroecosystems, there are limited studies regarding impacts of residual antibiotics in livestock manure on N transformation in entire recycling system. The objective was to evaluate effects of feeding monensin on N recycling during "straw feeding-substrate fermentation-mushroom cultivation". This experiment contained 3 steps. During straw feeding, beef cattle were allocated into 2 groups and fed diets with or without monensin, respectively. During fermentation, beef cattle manure (with or without monensin) and straw (corn or wheat) and were co-fermented for 35 d to produce substrates. During cultivation, Agaricus bisporus was cultivated on 4 substrates to recycle N in the form of mushrooms. Rates of N retention during fermentation were significant higher for monensin and corn straw treatments and there was an significant interaction between straw and antibiotic on N retention rate during cultivation. However, residual monensin significantly reduced amount of recycled N during entire recycling system, due to changes in N transformation-associated enzyme activity, ammonification and denitrification plus microbial community structure and succession. Specifically, residual monensin inhibited growth of dominant bacterial phylum Bacteroidetes and fungal phylum Neocallimastigomycota, and increased bacterial phylla Actinobacteriota and Firmicutes. These alterations in functional microbes increased N retention rates but reduced mushroom yields in antibiotic treatments during cultivation. In conclusion, monensin decreased the N recycling rate in recycling system, but also reduced N losses during fermentation by inhibiting ammonification and denitrification, so, avoiding antibiotics usage is an effective strategy to improve the efficiency of recycling systems.
Collapse
Affiliation(s)
- Fei Wang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Lixia Wang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Hai Xiang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Guoshuang Chen
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - Xiao Chang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China.
| |
Collapse
|