1
|
Shen SC, Spitzer B, Stefaniuk D, Zhou S, Masic A, Buehler MJ. Sewage sludge hydrochar characterization and valorization via hydrothermal processing for 3D printing. COMMUNICATIONS ENGINEERING 2025; 4:52. [PMID: 40097579 PMCID: PMC11914255 DOI: 10.1038/s44172-025-00387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Sewage sludge, a biosolid product of wastewater processing, is an often-overlooked source of rich organic waste. Hydrothermal processing has shown promise in converting sewage sludge into valorized materials with potential application in biofuels, asphalt binders, and bioplastics. Here we characterize the physicochemical properties of hydrochar, the carbonaceous solid phase product of hydrothermal processing, and investigate its use as bio-based filler in additive manufacturing. We find that the presence of metallic and metalloid dopants in sewage sludge, which are not typically found in biomass wastes, yields unusual results in organic material processing such as decreased graphitic ordering after thermal activation. We further find that addition of hydrochar generally decreases mechanical performance of additive manufacturing composites, however, some properties such as toughness can be recovered with nature-inspired architecting into gyroid microstructures. These findings demonstrate that more investigation is required to optimally valorize sewage sludge and similarly disordered waste streams.
Collapse
Affiliation(s)
- Sabrina C Shen
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Branden Spitzer
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Damian Stefaniuk
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, USA
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Pan H, Hao P, Li Q, Lv Z, Gao K, Liang X, Yang L, Gao Y. The role of lignin in 17β-estradiol biodegradation: insights from cellular characteristics and lipidomics. Microb Cell Fact 2024; 23:347. [PMID: 39731085 DOI: 10.1186/s12934-024-02605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
17β-estradiol (E2) is an endocrine disruptor, and even trace concentrations (ng/L) of environmental estrogen can interfere with the endocrine system of organisms. Lignin holds promise in enhancing the microbial degradation E2. However, the mechanisms by which lignin facilitates this process remain unclear, which is crucial for understanding complex environmental biodegradation in nature. In this study, we conducted a comprehensive analysis using cellular and lipidomics approaches to investigate the relationship between E2-degrading strain, Rhodococcus sp. RCBS9, and lignin. Our findings demonstrate that lignin significantly enhances E2 degradation efficiency, reaching 94.28% within 5 days with the addition of 0.25 mM lignin. This enhancement is associated with increased microbial growth and activity, reduced of membrane damages, and alleviation of oxidative stress. Fourier Transform Infrared Spectroscopy (FTIR) results indicate that lignin addition alters lipid peaks. Consequently, by analyzing lipid metabolism changes, we further elucidate how lignin addition promotes E2 degradation.
Collapse
Affiliation(s)
- Hanyu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Peng Hao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qiannan Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Zongshuo Lv
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Kun Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaojun Liang
- Institute of Animal Husbandry, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750002, China
| | - Lianyu Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Yunhang Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Stefanelli E, Vitolo S, Di Fidio N, Puccini M. Tailoring the porosity of chemically activated carbons derived from the HTC treatment of sewage sludge for the removal of pollutants from gaseous and aqueous phases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118887. [PMID: 37678019 DOI: 10.1016/j.jenvman.2023.118887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
The management of sewage sludge is currently an open issue due to the large volume of waste to be treated and the necessity to avoid incineration or landfill disposal. Hydrothermal carbonization (HTC) has been recognized as a promising thermochemical technique to convert sewage sludge into value-added products. The hydrochar (HC) obtained can be suitable for environmental application as fuel, fertilizer, and sorbent. In this study, activated hydrochars (AHs) were prepared from sewage sludge through HTC followed by chemical activation with potassium hydroxide (KOH) and tested for the removal of pollutants in gaseous and aqueous environments, investigating carbon dioxide (CO2) and ciprofloxacin (CIP) adsorption capacity. The effects of activation temperature (550-750 °C) and KOH/HC impregnation ratio (1-3) on the produced AHs morphology and adsorption capacity were studied by Response Surface Methodology (RSM). The results of RSM analysis evidenced a maximum CO2 uptake of 71.47 mg/g for mild activation conditions (600-650 °C and KOH/HC = 1 ÷ 2), whereas the best CIP uptake of 628.61 mg/g was reached for the most severe conditions (750 °C, KOH/HC = 3). The prepared AHs were also applied for the removal of methylene blue (MB) from aqueous solutions, and the MB uptake results were used for estimating the specific surface area of AHs. High surface areas up to 1902.49 m2/g were obtained for the highest activation temperature and impregnation ratio investigated. Predictive models of CO2 and CIP uptake were developed by RSM analysis, and the optimum activation conditions for maximizing the adsorption performance together with high AH yield were identified: 586 °C and KOH/HC ratio = 1.34 for maximum yield (26.33 %) and CO2 uptake (67.31 mg/g); 715 °C and KOH/HC ratio = 1.78 for maximum yield (18.75 %) and CIP uptake (370.77 mg/g). The obtained results evidenced that chemical activation of previously HTC-treated sewage sludge is a promising way to convert waste into valuable low-cost adsorbents.
Collapse
Affiliation(s)
- Eleonora Stefanelli
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Sandra Vitolo
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Nicola Di Fidio
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Monica Puccini
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy.
| |
Collapse
|
4
|
Chen ZL, Zhang YN, Guo JZ, Chen L, Li B. Enhanced removal of Cr(VI) by polyethyleneimine-modified bamboo hydrochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94185-94194. [PMID: 37526823 DOI: 10.1007/s11356-023-29085-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Hydrochar is an environmentally friendly and cheap adsorbent, but its adsorption amounts for anions is very limited. The functionalized hydrochar can overcome this shortcoming. Herein, polyethyleneimine-modified hydrochar (PEI-HC) was synthesized from hydrothermal carbonization (HTC) of methyl acrylate and bamboo after addition of initiator ammonium persulfate, and then modified by polyethyleneimine (PEI), which was used to treat Cr(VI). PEI-HC was tested by XANES, EXAFS, SEM-EDS, XPS, FTIR, N2 sorption isotherms, zeta potential, and elemental analyses. The characterizations showed that PEI was successfully grafted onto hydrochar, and the PEI-HC was rich in N and O functional groups, which presented high Cr(VI) sorption ability (528.41 mg·g-1 at pH 2). The bath experiments found the pseudo-second-order kinetic and Freundlich equations can well describe the adsorption kinetics and isotherm of the Cr(VI) adsorption onto PEI-HC, respectively. Electrostatic interaction, reduction, complexation, and H-bonding are the main removal mechanisms as supported by XANES, EXAFS, XPS, and FTIR. This study provides a strategy of combining HTC and free radical graft polymerization to convert agricultural and forestry wastes into functionalized hydrochar, showing highly efficient removal of Cr(VI).
Collapse
Affiliation(s)
- Zi-Le Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Yu-Nan Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Lin Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China.
| |
Collapse
|
5
|
Yahav Spitzer R, Belete YZ, Johnson HA, Kolusheva S, Mau V, Gross A. Hydrothermal carbonization reaction severity as an indicator of human-excreta-derived hydrochar properties and it's combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162176. [PMID: 36775163 DOI: 10.1016/j.scitotenv.2023.162176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Hydrothermal carbonization (HTC) is an emerging technology that may potentially address sanitation problems and energy scarcity. However, the significance of the parameters that govern HTC (e.g., temperature and time) is not fully understood, in particular for human excreta. A simplified coalification model was used to describe the 'strength' of thermal reactions by combining temperature and time into a single parameter, the severity factor. This study is the first to assess the extent to which a severity coalification model can predict the properties of human-excreta-derived hydrochar for a given severity with different combinations of reaction time and temperature. HTC experiments with raw human excreta were undertaken with 50 mL batch reactors at five different severities. Severity was established with different combinations of temperature (180 °C, 210 °C, and 240 °C) and reaction time based on the severity-factor equation. The resulting hydrochars were tested for combustion properties, and the respective gas emission as well as, physicochemical and surface area parameters. Significant correlations were found between severity and yield (R2 = 0.88), carbon content (R2 = 0.85), and calorific value (R2 = 0.90), with the properties being similar for a given severity but varying with different severities. Hydrochar's contact angle increased from 53.1° to 81.3° with increasing SF, while surface area remained low, ranging from <1 to 5.1 m2g-1, with no definite correlation to SF. Combustion profiles for a given severity were generally similar, but the ignition, peak, and burnout temperatures differed between severities. Gram-Schmidt curves indicated that gas emission profiles are similar for a given severity but vary with different severities. The main gases emitted in combustion were virtually identical in all treatments, and included CO2, alkenes (C9, C10), CH4, and H2O. It is concluded that many properties of hydrochar can be inferred from the severity factor.
Collapse
Affiliation(s)
- Reut Yahav Spitzer
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
| | - Yonas Zeslase Belete
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
| | - Hunter A Johnson
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Be'er Sheva, Israel
| | - Vivian Mau
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel
| | - Amit Gross
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker campus, 84990, Israel.
| |
Collapse
|
6
|
High performance and sustainable CNF membrane via facile in-situ envelopment of hydrochar for water treatment. Carbohydr Polym 2022; 296:119948. [DOI: 10.1016/j.carbpol.2022.119948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/30/2022] [Indexed: 12/25/2022]
|