1
|
Zhu Y, Liu Y, Xue S, Yang H, Han X, Zhang C, Duan G, Huang Y, Mao H, Ma C, Jiang S. Melamine sponge loaded anionic covalent organic framework by sodium alginate cross-linking for selective dye removal with high adsorption capacity and reusability. Int J Biol Macromol 2025; 313:144358. [PMID: 40382898 DOI: 10.1016/j.ijbiomac.2025.144358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/03/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Ionic dyes are widely used and emitted in large quantities by modern industries. It is of great importance to develop efficient and practical adsorbent materials for the removal of such pollutants. Ionic covalent organic frameworks (COFs) with charged pore environments and stable backbone structures are excellent candidates for dye adsorbents. To improve the drawbacks of COF powder, which is not easy to be recycled and prone to secondary pollution, we report an effective strategy to prepare the composite material by immobilizing dispersed anionic COF on melamine foam sponge (MF@COF). Sodium alginate cross-linking method is developed as a powerful combination of COF and MF, with no powder falling off during adsorption. The composite material can quickly adsorb dyes, and the removal rate of cationic dyes can reach >99 % in 10 min; at the same time, it can selectively separate anionic dyes. The adsorption capacity of MF@COF for methylene blue (MB), crystal violet (CV), and malachite green (MG), was 947 mg g-1, 466 mg g-1 and 1689 mg g-1 in terms of the weight of COF, respectively. Compared with using the COF powder alone, the adsorption capacity of the composite material has been improved to a certain extent, with MB's adsorption capacity increasing by 6.16 %. Furthermore, MF@COF composite showed its practicality in practical water adsorption tests and could be recycled >5 times, which makes it a simple and practical adsorbent for water pollution control.
Collapse
Affiliation(s)
- Yaqin Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Sen Xue
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoqi Yang
- College of Electrical, Energy and Power Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haimei Mao
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material, State Administration for Market Regulation, Hainan Academy of Inspection and Testing, Haikou, Hainan 570203, China
| | - Chunxin Ma
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material, State Administration for Market Regulation, Hainan Academy of Inspection and Testing, Haikou, Hainan 570203, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Zhang X, Li S, Wang Y, Shen J, Wei Y, Wang C. Preparation of amino/hydroxy dual-functionalized hypercrosslinked polymers for effective removal of organic dyes from water. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137405. [PMID: 39893983 DOI: 10.1016/j.jhazmat.2025.137405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Given the pervasive existence and toxicity of organic dyes, it is imperative to develop effective methods for their removal and detection. High-performance adsorbents competent for broad spectrum removal of organic dyes are highly expected. In this manuscript, we demonstrate the preparation of porous hypercrosslinked polymers (MAP-BCMBP-HCP) for the removal of anionic dyes, cationic dyes, and amphoteric dyes from water, through a simple Friedel-Crafts alkylation using m-aminophenol as a monomer and 4,4'-bis(chloromethyl)biphenyl (BCMBP) as a cross-linking agent. It exhibits high capacity for adsorption of the organic dyes, with maximum adsorption capacity of 299, 254, 388, 521, 111, 86, 962, 329, 173, and 153 mg/g to bromothymol blue, chromium black T, alizarin red S, chromium azurite S, methylene blue, crystal violet, rhodamine B, congo red, methyl orange, and caustic bright blue, which is superior to the majority of previously reported adsorbents. The removal efficiency of these dyes can reach 91-99 %, this may be attributed to the high specific surface area of the adsorbent, the rich pore structure, and the presence of abundant functional groups on the surface. Furthermore, MAP-BCMBP-HCP exhibited fast adsorption kinetics, enabling the rapid and highly efficient removal of organic dyes within 10-40 min. Chemisorption plays a predominant role in the overall adsorption process. Additionally, the analysis of adsorption thermodynamics demonstrates that this process occurs spontaneously. A combination of experimental and density functional theory (DFT) studies revealed that the dye adsorption on MAP-BCMBP-HCP was governed by hydrogen bonding interaction, hydrophobic interaction, π-π interaction, and pore-filling. The adsorption of the dyes did not change remarkably with variation in pH and salt concentration, as well as the coexistence of various anions and cations. The good performance of MAP-BCMBP-HCP for organic dye removal was validated using simulated wastewater. In addition, the polymer shows a good ability to remove other pollutants including naphthalene and its derivatives, bisphenols, and polyfluorinated benzoic acids, indicating its potential for broad-spectrum organic pollutants. MAP-BCMBP-HCP can be readily reused at least six times without a notable decline in adsorption efficacy. All these features lay a solid foundation for the application of MAP-BCMBP-HCP in practical industrial wastewater treatment.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Shihao Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yuelin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
3
|
Cui HF, Yang F, Liu C, Zhu HW, Liu MY, Guo RT. Recent Progress of Covalent Organic Frameworks-Based Materials Used for CO 2 Electrocatalytic Reduction: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502867. [PMID: 40103429 DOI: 10.1002/smll.202502867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/09/2025] [Indexed: 03/20/2025]
Abstract
The excessive CO2 emissions from human activities severely impact the natural environment and ecosystems. Among the various technologies available, electrocatalytic CO2 reduction is regarded as one of the most promising routes due to its exceptional environmental friendliness and sustainability. Covalent organic frameworks (COFs) are crystalline, porous organic networks that are formed through thermodynamically controlled reversible covalent polymerization of organic linkers via covalent bonding. These materials exhibit high porosity, large surface area, excellent chemical and thermal stability, sustainability, high electron transfer efficiency, and surface functionalization capabilities, making them particularly effective in electrocatalytic CO2 reduction. First, this review briefly introduces the fundamental principles of electrocatalysis and the mechanism of electrocatalytic CO2 reduction. Next, it discusses the composition, structure, and synthesis methods of COF-based materials, as well as their applications in electrocatalytic CO2 reduction. Furthermore, it reviews the research progress in this field from the perspective of different types of COF-based catalysts. Finally, in light of the current research status, the development prospects of COF-based catalysts are explored, providing a reference for the development of more efficient and stable COF electrocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Heng-Fei Cui
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Feng Yang
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Cong Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Hao-Wen Zhu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Ming-Yang Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
4
|
Zhang X, Yan M, Chen P, Li J, Li Y, Li H, Liu X, Chen Z, Yang H, Wang S, Wang J, Tang Z, Huang Q, Lei J, Hayat T, Liu Z, Mao L, Duan T, Wang X. Emerging MOFs, COFs, and their derivatives for energy and environmental applications. Innovation (N Y) 2025; 6:100778. [PMID: 39991481 PMCID: PMC11846040 DOI: 10.1016/j.xinn.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Traditional fossil fuels significantly contribute to energy supply, economic development, and advancements in science and technology. However, prolonged and extensive use of fossil fuels has resulted in increasingly severe environmental pollution. Consequently, it is imperative to develop new, clean, and pollution-free energy sources with high energy density and versatility as substitutes for conventional fossil fuels, although this remains a considerable challenge. Simultaneously, addressing water pollution is a critical concern. The development, design, and optimization of functional nanomaterials are pivotal to advancing new energy solutions and pollutant remediation. Emerging porous framework materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), recognized as exemplary crystalline porous materials, exhibit potential in energy and environmental applications due to their high specific surface area, adjustable pore sizes and structures, permanent porosity, and customizable functionalities. This work provides a comprehensive and systematic review of the applications of MOFs, COFs, and their derivatives in emerging energy technologies, including the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, lithium-ion batteries, and environmental pollution remediation such as the carbon dioxide reduction reaction and environmental pollution management. In addition, strategies for performance adjustment and the structure-effect relationships of MOFs, COFs, and their derivatives for these applications are explored. Interaction mechanisms are summarized based on experimental discussions, theoretical calculations, and advanced spectroscopy analyses. The challenges, future prospects, and opportunities for tailoring these materials for energy and environmental applications are presented.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Minjia Yan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Pei Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jiaqi Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuxuan Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenwu Tang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiehong Lei
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Tasawar Hayat
- Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiangke Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
5
|
Jrad A, Das G, Alkhatib N, Prakasam T, Benyettou F, Varghese S, Gándara F, Olson M, Kirmizialtin S, Trabolsi A. Cationic covalent organic framework for the fluorescent sensing and cooperative adsorption of perfluorooctanoic acid. Nat Commun 2024; 15:10490. [PMID: 39622838 PMCID: PMC11612209 DOI: 10.1038/s41467-024-53945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
The contamination of water by per- and polyfluorinated substances (PFAS) is a pressing global issue due to their harmful effects on health and the environment. This study explores a cationic covalent organic framework (COF), TG-PD COF, for the efficient detection and removal of perfluorooctanoic acid (PFOA) from water. Synthesized via a simple sonochemical method, TG-PD COF shows remarkable selectivity and sensitivity to PFOA, with a detection limit as low as 1.8 µg·L⁻¹. It achieves significant PFOA adsorption exceeding 2600 mg·g⁻¹ within seconds over several cycles in batch mode and complete removal at environmentally relevant concentrations in column adsorption. Results reveal unique adsorption behavior characterized by two phases, leveraging PFOA aggregation through hydrophobic interactions. Computer simulations elucidate the mechanisms underlying TG-PD COF's sensing, adsorption, and charge transfer dynamics. Our findings position this COF design strategy as a promising solution for combating PFAS contamination in water bodies worldwide.
Collapse
Affiliation(s)
- Asmaa Jrad
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Gobinda Das
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nour Alkhatib
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, New York, New York, 10003, USA
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Sabu Varghese
- Core Technologies Platform, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Mark Olson
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Chemistry, New York University, New York, New York, 10003, USA.
- Center for Smart Engineering Materials, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Ali Trabolsi
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Nie L, Liao J, Zhou Q. Covalent organic framework-functionalized magnetic MXene nanocomposite for efficient pre-concentration and detection of organophosphorus and organochlorine pesticides in tea samples before gas chromatography-triple quadrupole mass spectrometry analysis. Food Chem 2024; 459:140352. [PMID: 38991447 DOI: 10.1016/j.foodchem.2024.140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 μg/L and had low limits of detection (0.013-0.018 μg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China..
| |
Collapse
|
7
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
8
|
Ramezanzade V, Dinari M, Mehvari F. Investigation study of methyl violet photodegradation over alginate-carboxymethyl cellulose/titanium(IV) oxide/covalent organic frameworks bio-nanocomposite beads under ultraviolet irradiation. Int J Biol Macromol 2024; 277:134287. [PMID: 39095274 DOI: 10.1016/j.ijbiomac.2024.134287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Concerned about water treatment, it is of great importance to present new approaches for improving photocatalytic activity. Since photocatalysis is ubiquitous in almost all chemical manufacturing processes, the development of photocatalytic systems carries significance for our environment. In this regard, three different amounts of covalent organic frameworks decorated with titanium(IV) oxide nanoparticles (TiO2/COF hybrids) in Alginate-Carboxymethyl cellulose (Alg-CMC) blend matrix were prepared under ultrasound irradiation, which Citric acid and Calcium chloride acted as two green cross-linkages. Based on the physio-chemical analyses of these bio-nanocomposite (bio-NC) beads, the Alg-CMC blend polymer appeared to be the best candidate for a disparity of TiO2/COF hybrids. Not only did COF aid to increase the distribution of TiO2 nanoparticles, but it declined the bandgap energies. The resultant Alg-CMC/TiO2/COF (TiO2/COF = 15:6) bio-NC beads demonstrated efficient photodegradation activity towards Methyl violet (MV) under Ultraviolet light. The obtained results of scavenger studies indicated that superoxide radicals and electron agents played a major role in MV degradation. Further investigation confirmed that single oxygen addition and N-de-methylation could be two important pathways for the decomposition of MV by these bio-NC beads.
Collapse
Affiliation(s)
- Vahid Ramezanzade
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Fariba Mehvari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
9
|
Chen LH, Chen XY, Song S, Zhang SF, Zhao YG, Lu Y. Preparation of Magnetic Spongy Porous Carbon Skeleton Materials for Efficient Removal of BTEX. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18736-18749. [PMID: 39172386 DOI: 10.1021/acs.langmuir.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Magnetic polymer microspheres have been extensively utilized as separable and highly efficient adsorbents in wastewater treatment. In this study, a series of novel magnetic spongy porous carbon skeleton materials (Mag-SPCS) have been designed and synthesized by acetonitrile suspension precipitation polymerization, which combines the advantages of the acetonitrile precipitation method and the suspension polymerization method. It was demonstrated that the transformation of the material morphology from microspheres to a porous sponge was achieved by a gradual decrease in the usage amount of ethylene glycol. After N,N-dimethyloctadecylamine (C18) was grafted onto the Mag-SPCS materials, the C18-Mag-SPCS materials with a superhigh saturation adsorption capacity and superfast adsorption efficiency were used for the removal of BTEX (toluene, benzene, and para-xylene) in wastewater. Subsequently, the adsorption properties of the composites with different morphologies were evaluated, and the effect of the usage amount of C18 on the adsorption properties of the C18-Mag-SPCS was further investigated. The maximum adsorption capacities of C18-Mag-SPCS for benzene, toluene, and para-xylene were 714.84, 564.32, and 394.48 mg/g, respectively. The adsorption process was conducted in accordance with the proposed secondary and Langmuir models. Finally, the FTIR, XPS, and XRD characterization results before and after adsorption demonstrated that the adsorption mechanism of toluene onto C18-Mag-SPCS was primarily hydrogen bonding, π-π stacking, and van der Waals forces. These findings of the study indicate that the composite material exhibits an ultrahigh saturation adsorption capacity and ultrafast adsorption efficiency, thereby confirming its considerable potential for application in wastewater treatment.
Collapse
Affiliation(s)
- Li-Hui Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xing-Yi Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shui-Feng Zhang
- Key Laboratory of Biosafety Detection for Zhejiang Market Regulation, Zhejiang Fangyuan Test Group Co., Ltd., Hangzhou 310018, China
| | - Yong-Gang Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yin Lu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
10
|
Gai T, Jiang J, Wang S, Zhang L, Ren Y, Qin Z, Wu Q, Zhang J, Liao J. Highly sensitive and selective determination of uranyl ions based on Ag/Ag 2O-COF composite SERS substrate. Talanta 2024; 277:126407. [PMID: 38878512 DOI: 10.1016/j.talanta.2024.126407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/19/2024]
Abstract
Uranium is an essential nuclear material in civilian and military areas; however, its extensive application raises concerns about the potential safety issues in the fields of environmental protection and nuclear industry. In this study, we developed an Ag/Ag2O-COF (covalent-organic framework) composite SERS substrate to detect uranyl ions (UO22+) in environmental aqueous solutions. Herein, the strong SERS effect of uranyl adsorbed in Ag/Ag2O composite and the high adsorption efficiency of COF TpPa-1 were combined to realize the trace detection of uranyl ions. This method displayed a linear range of 10-8 mol L-1 to 10-6 mol L-1 with the detection limit of 8.9 × 10-10 mol L-1 for uranyl ions. Furthermore, common metal cations and oxo-ions hardly affected the SERS detection of uranyl, which is helpful for the trace analysis of uranyl in natural water samples. Although the proposed strategy is deployed for uranyl detection, the reusable and high-efficiency system may be expanded to trace detection of other substance with Raman activity.
Collapse
Affiliation(s)
- Tao Gai
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Jiaolai Jiang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Shaofei Wang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China.
| | - Ling Zhang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Yiming Ren
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Zhen Qin
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Qian Wu
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Jun Zhang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Junsheng Liao
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China.
| |
Collapse
|
11
|
Lee W, Li H, Du Z, Feng D. Ion transport mechanisms in covalent organic frameworks: implications for technology. Chem Soc Rev 2024; 53:8182-8201. [PMID: 39021129 DOI: 10.1039/d4cs00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising materials for ion conduction due to their highly tunable structures and excellent electrochemical stability. This review paper explores the mechanisms of ion conduction in COFs, focusing on how these materials facilitate ion transport across their ordered structures, which is crucial for applications such as solid electrolytes in batteries and fuel cells. We discuss the design strategies employed to enhance ion conductivity, including pore size optimization, functionalization with ionic groups, and the incorporation of solvent molecules and salts. Additionally, we examine the various applications of ion-conductive COFs, particularly in energy storage and conversion technologies, highlighting recent advancements and future directions in this field. This review paper aims to provide a comprehensive overview of the current state of research on ion-conductive COFs, offering insights into their potential to design highly ion-conductive COFs considering not only fundamental studies but also practical perspectives for advanced electrochemical devices.
Collapse
Affiliation(s)
- Wonmi Lee
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | - Haochen Li
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | - Zhilin Du
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| | - Dawei Feng
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Yu SC, Li X, Cheng L, Liu L. Constrution of Quinazoline-Linked Covalent Organic Frameworks via a Multicomponent Reaction for Photocatalysis. Chemistry 2024; 30:e202400668. [PMID: 38822692 DOI: 10.1002/chem.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Quinazoline (Qz)-linked covalent organic frameworks (COFs) have been constructed via a three-component reaction of ortho-acylanilines, benzaldehydes and NH4OAc. The structure of Qz-COFs has been confirmed by solid-state nuclear magnetic resonance spectroscopy, Fourier transform infrared and powder X-ray diffraction patterns. The Qz-COFs possess high chemical stability, showing good endurance to strong acid, strong base, oxidant, reductant and other conditions. Particularly, Qz-COF-3 can catalyze the aerobic photooxidation of toluene and other compounds containing C(sp3)-H bonds.
Collapse
Affiliation(s)
- Song-Chen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohu Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
13
|
Xiang X, Mao X, Ding X, Gu X, Li H, Liu R, Liu Y, Jin J, Qin L. Assembly of core-shell Fe 3O 4 @CD-MOFs derived hollow magnetic microcubes for efficient extraction of hazardous substances: Plausible mechanisms for selective adsorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134588. [PMID: 38797072 DOI: 10.1016/j.jhazmat.2024.134588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Hazardous heavy metals and organic substances removal is of great significance for ensuring the safety of aquatic-ecosystem, yet the highly effective and selective extraction always remains challenging. To address this problem, magnetic hollow microcubes were fabricated through thermal carbonization of Fe3O4-COOH@ γ-CD-MOFs, and core-shell structured precursors were in-situ greenly constructed on a large scale via microwave-assisted self-assembly strategy. As noted, the development of secondary crystallization was utilized to achieve uniform dispersion of cores within MOFs frameworks and thus improved magnetic and adsorption ability of composites. Acquired magnetic Fe3O4 @HC not only can harvest excellent extraction of heavy metals (Cd, Pb, and Cu of 129.87, 151.05, and 106.98 mg·g-1) but also exhibit highly selective adsorption ability for cationic organics (separation efficiency higher than 95.0 %). Impressively, Fe3O4 @HC achieved outstanding adsorption (60-80 %) of Cd in realistic mussel cooking broth with no obvious loss in amino acid. Characterizations better offer mechanistic insight into the enhanced selectivity of positively charged pollutants can be attributed to synergistic effect of ions exchange and electrostatic interaction of abundant oxygen-containing functional groups. Our study provides a feasible route by rationally developing core-shell structured composites to promote the practical applications of sustainable water treatment and value-added utilization of processing by-products.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Mao
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinqi Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiu Gu
- Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haorui Li
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ruizhi Liu
- Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yong Liu
- National Narcotic Laboratory Zhejiang Regional Center (NNLZRC), Hangzhou 310053, China
| | - Jiabin Jin
- National Narcotic Laboratory Zhejiang Regional Center (NNLZRC), Hangzhou 310053, China
| | - Lei Qin
- Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
14
|
Safeer R, Liu G, Yousaf B, Ashraf A, Haider MIS, Cheema AI, Ijaz S, Rashid A, Sikandar A, Pikoń K. Insights into the biogeochemical transformation, environmental impacts and biochar-based soil decontamination of antimony. ENVIRONMENTAL RESEARCH 2024; 251:118645. [PMID: 38485077 DOI: 10.1016/j.envres.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Every year, a significant amount of antimony (Sb) enters the environment from natural and anthropogenic sources like mining, smelting, industrial operations, ore processing, vehicle emissions, shooting activities, and coal power plants. Humans, plants, animals, and aquatic life are heavily exposed to hazardous Sb or antimonide by either direct consumption or indirect exposure to Sb in the environment. This review summarizes the current knowledge about Sb global occurrence, its fate, distribution, speciation, associated health hazards, and advanced biochar composites studies used for the remediation of soil contaminated with Sb to lessen Sb bioavailability and toxicity in soil. Anionic metal(loid) like Sb in the soil is significantly immobilized by pristine biochar and its composites, reducing their bioavailability. However, a comprehensive review of the impacts of biochar-based composites on soil Sb remediation is needed. Therefore, the current review focuses on (1) the fundamental aspects of Sb global occurrence, global soil Sb contamination, its transformation in soil, and associated health hazards, (2) the role of different biochar-based composites in the immobilization of Sb from soil to increase biochar applicability toward Sb decontamination. The review aids in developing advanced, efficient, and effective engineered biochar composites for Sb remediation by evaluating novel materials and techniques and through sustainable management of Sb-contaminated soil, ultimately reducing its environmental and health risks.
Collapse
Affiliation(s)
- Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Audil Rashid
- Botany Department, Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Anila Sikandar
- Department of Environmental Science, Kunming University of Science and Technology, 650500, Yunnan, PR China
| | - Krzysztof Pikoń
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44 -100, Gliwice, Poland
| |
Collapse
|
15
|
Samajdar S, Golda A S, Lakhera SK, Ghosh S. Recent progress in chromium removal from wastewater using covalent organic frameworks - A review. CHEMOSPHERE 2024; 350:141028. [PMID: 38142883 DOI: 10.1016/j.chemosphere.2023.141028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Covalent organic frameworks (COFs) offer a pivotal solution to urgently address heavy metal removal from wastewater due to their exceptional attributes such as high adsorption capacity, tunable porosity, controllable energy band structures, superior photocatalytic performance, and high stability-reusability. Despite these advantages, COFs encounter certain challenges, including inefficient utilization of visible light, rapid recombination of photogenerated carriers, and limited access to active sites due to close stacking. To enhance the photocatalytic and adsorptive performance of COF-based catalysts, various modification strategies have been reported, with a particular focus on molecular design, structural regulation, and heterostructure engineering. This review comprehensively explores recent advancements in COF-based photocatalytic and adsorptive materials for chromium removal from wastewater, addressing kinetics, mechanisms, and key influencing factors. Additionally, it sheds light on the influence of chemical composition and functional groups of COFs on the efficiency of hexavalent chromium [Cr (VI)] removal.
Collapse
Affiliation(s)
- Soumita Samajdar
- CSIR - Central Glass and Ceramic Research Institute Raja S. C, Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiny Golda A
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chengalpattu 603203, Tamilnadu, India
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chengalpattu 603203, Tamilnadu, India.
| | - Srabanti Ghosh
- CSIR - Central Glass and Ceramic Research Institute Raja S. C, Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Yu C, Xie T, Liu S, Bai L. Fabrication of a biochar-doped monolithic adsorbent and its application for the extraction and determination of coumarins from Angelicae Pubescentis Radix. J Chromatogr A 2024; 1714:464564. [PMID: 38071875 DOI: 10.1016/j.chroma.2023.464564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
A monolithic adsorbent was designed aiming to the structure of osthole and columbianadin, and fabricated using diallyl phthalate as the monomer and ethylene dimethacrylate as the crosslinker with the addition of bamboo biochar, via polymerization reaction in a stainless-steel tube. The prepared composite adsorbent packed in the tube was used as a solid-phase extraction column for the extraction and determination of two coumarins (osthole and columbianadin) in Angelicae Pubescentis Radix, combing with a C18 analytical column through an HPLC instrument, which show excellent matrix-removal ability and good selectivity to osthole and columbianadin. Furthermore, the present adsorbent shows good applicability, which was used for the extraction of osthole from Duhuo Jisheng Pill. Compared to the commercial C18 and phenyl adsorbent, the present adsorbent own better selectivity and higher resolution. These results attributed to the enhanced specific surface area (141 m2/g) and enriched interaction sites of the resulting composite adsorbent, due to the doping of bamboo biochar, which can produce hydrogen bond, dipole-dipole, π-π and hydrophobic force interactions with the osthole and columbianadin. The methodology validation indicated that the present method showed good precision and good accuracy, and the composite adsorbent showed good preparative repeatability, which can be reused for no less than 100 times with the relative standard deviation ≤4.6 % (n = 100). The present work provided a simple and efficient method for the extraction and determination osthole and columbianadin from Angelicae Pubescentis Radix.
Collapse
Affiliation(s)
- Changqing Yu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Tiantian Xie
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Sihan Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Public Health Safety of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, China.
| |
Collapse
|
17
|
Manikandan R, Yoon JH, Chang SC. Emerging Trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices. CHEMOSPHERE 2023; 344:140231. [PMID: 37775053 DOI: 10.1016/j.chemosphere.2023.140231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Heavy metal ions (HMIs) have become a significant contaminant in recent years. The increase in heavy metal pollution is a serious situation, requiring progressively robust, fast sensing, highly sensitive, and suitable techniques for heavy metal detection. Compared to other classical analytical methods, electroanalytical techniques, especially stripping voltammetric techniques with modified screen-printed electrodes (SPEs), have several advantages, such as fast sensing, great sensitivity, specificity, and long-time stability. Therefore, these techniques are more suitable for HMI detection. In this review, the nanostructured materials used to coat SPEs for the electrochemical determination of HMI are summarized. Additionally, the electrode fabrication method, modification steps, and electroanalytical study of these materials are systematically discussed. Hence, this review will support the researchers in precisely evaluating the electrochemical HMIs detection through highly sensitive stripping voltammetric techniques using SPE modified with nanostructured carbon and their allotropes, metal, metal oxides and their nanocomposites as sensor materials. Moreover, modified electrodes real time detection of HMIs in different food and environmental samples were briefly discussed.
Collapse
Affiliation(s)
- Ramalingam Manikandan
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Centre, Korea Basic Science Institute, Busan, 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
18
|
Zango ZU, Binzowaimil AM, Aldaghri OA, Eisa MH, Garba A, Ahmed NM, Lim JW, Ng HS, Daud H, Jumbri K, Khoo KS, Ibnaouf KH. Applications of covalent organic frameworks for the elimination of dyes from wastewater: A state-of-the-arts review. CHEMOSPHERE 2023; 343:140223. [PMID: 37734509 DOI: 10.1016/j.chemosphere.2023.140223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Covalent organic frameworks (COFs) are class of porous coordination polymers made up of organic building blocks joined together by covalent bonding through thermodynamic and controlled reversible polymerization reactions. This review discussed versatile applications of COFs for remediation of wastewater containing dyes, emphasizing the advantages of both pristine and modified materials in adsorption, membrane separation, and advanced oxidations processes. The excellent performance of COFs towards adsorption and membrane filtration has been centered to their higher crystallinity and porosity, exhibiting exceptionally high surface area, pore size and pore volumes. Thus, they provide more active sites for trapping the dye molecules. On one hand, the photocatalytic performance of the COFs was attributed to their semiconducting properties, and when coupled with other functional semiconducting materials, they achieve good mechanical and thermal stabilities, positive light response, and narrow band gap, a typical characteristic of excellent photocatalysts. As such, COFs and their composites have demonstrated excellent potentialities for the elimination of the dyes.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Ayed M Binzowaimil
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Osamah A Aldaghri
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Mohamed Hassan Eisa
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Naser M Ahmed
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Hanita Daud
- Mathematical and Statistical Science, Department of Fundamental and Applied Sciences, Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Khalid Hassan Ibnaouf
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia.
| |
Collapse
|
19
|
Wei J, Li R, Zhang P, Jin H, Zhang Z, Li Y, Chen Y. Efficient selective removal of uremic toxin precursor by olefin-linked covalent organic frameworks for nephropathy treatment. Nat Commun 2023; 14:2805. [PMID: 37193688 DOI: 10.1038/s41467-023-38427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Indoxyl sulfate is a protein-bound uremic toxin synthesized from indole that cannot be efficiently removed by the hemodialysis method and thus becomes a key risk factor for the progression of chronic kidney disease. Here, we develop a non-dialysis treatment strategy to fabricate an ultramicroporous olefin-linked covalent organic framework with high crystallinity in a green and scalable fashion for selectively removing the indoxyl sulfate precursor (i.e., indole) from the intestine. Various analyses show that the resulting material exhibits excellent gastrointestinal fluid stability, high adsorption efficiency, and good biocompatibility. Notably, it realizes the efficient and selective removal of indole from the intestine and significantly attenuates serum indoxyl sulfate level in vivo. More importantly, the selective removal efficacy of indole is substantially higher than that of the commercial adsorbent AST-120 used in the clinic. The present study opens up a new avenue to eliminate indoxyl sulfate by a non-dialysis strategy and further expands the in vivo applications of covalent organic frameworks.
Collapse
Affiliation(s)
- Jinxia Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Penghui Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Haiqun Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, China
| | - Yubo Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
20
|
Rasheed T, Ahmad Hassan A, Ahmad T, Khan S, Sher F. Organic Covalent Interaction-based Frameworks as Emerging Catalysts for Environment and Energy Applications: Current Scenario and Opportunities. Chem Asian J 2023:e202300196. [PMID: 37171867 DOI: 10.1002/asia.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Indexed: 05/13/2023]
Abstract
The term "covalent organic framework" (COF) refers to a class of porous organic polymeric materials made from organic building blocks that have been covalently bonded. The preplanned and predetermined bonding of the monomer linkers allow them to demonstrate directional flexibility in two- or three-dimensional spaces. COFs are modern materials, and the discovery of new synthesis and linking techniques has made it possible to prepare them with a variety of favorable features and use them in a range of applications. Additionally, they can be post-synthetically altered or transformed into other materials of particular interest to produce compounds with enhanced chemical and physical properties. Because of its tunability in different chemical and physical states, post-synthetic modifications, high stability, functionality, high porosity and ordered geometry, COFs are regarded as one of the most promising materials for catalysis and environmental applications. This study highlights the basic advancements in establishing the stable COFs structures and various post-synthetic modification approaches. Further, the photocatalytic applications, such as organic transformations, degradation of emerging pollutants and removal of heavy metals, production of hydrogen and Conversion of carbon dioxide (CO2 ) to useful products have also been presented. Finally, the future research directions and probable outcomes have also been summarized, by focusing their promises for specialists in a variety of research fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Adv. Mater., King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Adeel Ahmad Hassan
- Department of Polymer Science and Engineering, Shanghai State Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
21
|
Han JC, Ahmad M, Yousaf M, Rahman SU, Sharif HMA, Zhou Y, Yang B, Huang Y. Strategic analysis on development of simultaneous adsorption and catalytic biodegradation over advanced bio-carriers for zero-liquid discharge of industrial wastewater. CHEMOSPHERE 2023; 332:138871. [PMID: 37172628 DOI: 10.1016/j.chemosphere.2023.138871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
Collapse
Affiliation(s)
- Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
22
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
23
|
Chen R, Liu Y, Weng J, Huang H, Gao X, Wang Z, Liu J. Microporous melamine-formaldehyde networks loaded on rice husks for dynamic removal of organic micropollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121200. [PMID: 36736815 DOI: 10.1016/j.envpol.2023.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The alteration of agricultural wastes into novel adsorbents can stimulate their scalability in realistic application, showing great economic and environmental advantages. Here, we proposed a strategy to engineer rice husk (RH) with microporous melamine-formaldehyde networks (MFNs) resins and the utilization for dynamic removal of organic micropollutants rapidly and efficiently. was pre-treated to acquire attractive surface and unique hierarchical porosity, endowing with surface functionalization and essential filtering properties. MFNs can be uniformly generated in-situ on the fully exposed cellulose backbones of the pre-treated RH. MFNs granules functionalized RH (RH@MFNs) exhibited high removal efficiencies over 90% within 30 min for the adsorption of hazardous organic compounds (e.g., phenolic and antibiotic micropollutants) in static tests. Experiment results and density functional theory (DFT) simulation revealed that the synergy of hydrogen bonding, π-πinteraction, and micropore preservation dominates the adsorption. Further dynamic adsorption experiments showed that the removal efficiency and equilibrium removal capacity towards bisphenol A by RH@MFNs packed bed up-flow column were 2.6 and 67 times higher than that of raw RH, respectively. The column adsorption fits well with the Thomas model and bed depth service time (BDST) kinetic model. The inherent macropores inside RH and the roughness caused by the spiky structures and mesopores outside RH, as well as the accumulated MFNs granules, can lead to local turbulence of water flow around RH@MFNs, enabling fast and efficient adsorption. This sustainable and cost-effective preparation of RH-based adsorbents sheds light on the rational design of biomass waste adsorbents for realistic wastewater.
Collapse
Affiliation(s)
- Rongqing Chen
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunjia Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jinlan Weng
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Hua Huang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaoying Gao
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhipeng Wang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jian Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
24
|
Mastropietro TF. Metal-organic frameworks and plastic: an emerging synergic partnership. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2189890. [PMID: 37007671 PMCID: PMC10054298 DOI: 10.1080/14686996.2023.2189890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Mismanagement of plastic waste results in its ubiquitous presence in the environment. Despite being durable and persistent materials, plastics are reduced by weathering phenomena into debris with a particle size down to nanometers. The fate and ecotoxicological effects of these solid micropollutants are not fully understood yet, but they are raising increasing concerns for the environment and people's health. Even if different current technologies have the potential to remove plastic particles, the efficiency of these processes is modest, especially for nanoparticles. Metal-organic frameworks (MOFs) are crystalline nano-porous materials with unique properties, have unique properties, such as strong coordination bonds, large and robustus porous structures, high accessible surface areas and adsorption capacity, which make them suitable adsorbent materials for micropollutants. This review examines the preliminary results reported in literature indicating that MOFs are promising adsorbents for the removal of plastic particles from water, especially when MOFs are integrated in porous composite materials or membranes, where they are able to assure high removal efficiency, superior water flux and antifouling properties, even in the presence of other dissolved co-pollutants. Moreover, a recent trend for the alternative preparation of MOFs starting from plastic waste, especially polyethylene terephthalate, as a sustainable source of organic linkers is also reviewed, as it represents a promising route for mitigating the impact of the costs deriving from the widescale MOFs production and application. This connubial between MOFs and plastic has the potential to contribute at implementing a more effective waste management and the circular economy principles in the polymer life cycle.
Collapse
|
25
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
26
|
Bhadra BN, Shrestha LK, Ariga K. Porous Boron Nitride Nanoarchitectonics for Environment: Adsorption in Water. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
27
|
Yu X, Yu F, Li Z, Zhan J. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of the middle and lower reaches of the Yellow River (Henan section). JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130369. [PMID: 36444065 DOI: 10.1016/j.jhazmat.2022.130369] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are commonly seen emerging organic contaminants in aquatic environments. The transects for the occurrence and distribution of 24 PPCPs along the middle and lower reaches of the Yellow River (Henan section) were investigated in this study. All 24 targeted compounds were detected in surface water, with concentrations in the range from not detected (ND) to 527.4 ng/L. Among these PPCPs, caffeine is found to have the highest concentration and its detection frequency is 100%. The total PPCP concentration ranged from 136 ng/L to 916 ng/L (median, 319.5 ng/L). Spatial analysis showed that the pollution level of PPCPs in the trunk stream was lower than that in most tributaries in the middle and lower reaches of the Yellow River (Henan section). The ecotoxicological risk assessment indicated that norfloxacin, azithromycin, estrone, and triclosan posed high risks to aquatic organisms (RQ > 1), roxithromycin and oxytetracycline imposed moderate risks (0.1 ≤ RQ < 1), and the tributary Jindi River had the highest mixed risk (MRQ = 222).
Collapse
Affiliation(s)
- Xiaopeng Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Furong Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, Ministry of Natural Resources, Zhengzhou 450046, Henan, China; Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou 450046, Henan, China
| | - Zhiping Li
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, Ministry of Natural Resources, Zhengzhou 450046, Henan, China; Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou 450046, Henan, China.
| | - Jiang Zhan
- Yellow River Engineering Consulting Co., Ltd, Zhengzhou 450045, Henan, China; Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (under construction), Zhengzhou 450003, Henan, China
| |
Collapse
|
28
|
Rasheed T, Khan S, Ahmad T, Ullah N. Covalent Organic Frameworks-Based Membranes as Promising Modalities from Preparation to Separation Applications: An Overview. CHEM REC 2022; 22:e202200062. [PMID: 35641392 DOI: 10.1002/tcr.202200062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Indexed: 12/21/2022]
Abstract
Covalent organic frameworks (COFs) are a promising class of porous crystalline materials made up of covalently connected and periodically protracted network topologies through organic linkers. The tailorability of organic linker and intrinsic structures endow COFs with a tunable porosity and structure, low density, facilely-tailored functionality, and large surface area, attracting increasing amount of interests in variety of research areas of membrane separations. COF-based membranes have spawned a slew of new research projects, ranging from fabrication methodologies to separation applications. Herein, we tried to emphasis the major developments in the synthetic approaches of COFs based membranes for a variety of separation applications such as, separation of gaseous mixtures, water treatment as well as separation of isomeric and chiral organic compounds. The proposed methods for fabricating COF-based continuous membranes and columns for real world applications are also thoroughly explored. Finally, a viewpoint on the future directions and remaining challenges for COF research in the area of separation is provided.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|