1
|
King A, Noblitt D, Sherron O, Kjerfve C, Pless L, Truex NL. An artificial transcription factor that activates potent interferon-γ expression in human Jurkat T Cells. FRONTIERS IN MOLECULAR MEDICINE 2025; 4:1492370. [PMID: 39844823 PMCID: PMC11751033 DOI: 10.3389/fmmed.2024.1492370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Interferon (IFN)-γ is a central regulator of cell-mediated immunity in human health and disease, but reduced expression of the target receptors impairs signaling activity and leads to immunotherapy resistance. Although intracellular expression of IFN-γ restores the signaling and downstream functions, we lack the tools to activate the IFNG gene instead of cell surface receptors. This paper introduces the design and characterization of an artificial transcription factor (ATF) protein that recognizes the IFNG gene with six zinc finger domains, which are dovetailed to a VP64 signaling domain that promotes gene transcription and translation. Biological studies with human Jurkat T cells reveal that the ATF amplifies IFNG gene transcription and translation, and also stimulates gene transcription for multiple class I and II HLA alleles and interferon-stimulated genes (ISGs). Biophysical characterization showed the recombinant ATF protein recognizes the human IFNG gene with nanomolar affinity (KD = 5.27 ± 0.3 nM), adopts a protein secondary structure associated with the ββα-fold of zinc finger domains, and is resistant to thermal denaturation. These studies demonstrate that transcriptional targeting of cytokine genes, rather than surface receptors, activates cytokine expression and shows significant potential for directing immune function.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Davis Noblitt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Olivia Sherron
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
- College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Clara Kjerfve
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Lydia Pless
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Nicholas L. Truex
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
2
|
Kılınçer M, Gürsoy E. Assessing the short-term hematological and pulmonary effects of air pollution: a cross-sectional study in a Turkish urban setting. BMC Public Health 2025; 25:16. [PMID: 39748373 PMCID: PMC11697805 DOI: 10.1186/s12889-024-21246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Air pollution has become a significant global public health concern, with evidence linking it to various adverse health outcomes, including respiratory and cardiovascular diseases. While numerous studies have investigated the effects of these particulate and gaseous pollutants on both healthy individuals and patients, further research is needed to clarify the short-term hematological and pulmonary responses in individuals without underlying health conditions. This study aims to explore the relationship between air quality, hematological parameters, and pulmonary function in a healthy population in Turkey. METHODS This cross-sectional study included 326 healthy, non-smoking adults aged 18-65 years. Air Quality Index (AQI) data for the examination day and the preceding 5 days were collected. Hematological parameters and pulmonary function tests were analyzed. Spearman and Pearson correlation tests were used to compare numerical variables. Group comparisons were conducted using the independent samples t-test and Mann-Whitney U test. RESULTS The mean AQI on the day of the medical visit was 68.20, indicating moderate air quality. Significant negative correlations were observed between AQI and hematological parameters, including leukocyte (r = -0.111, p = 0.046), lymphocyte (r = -0.134, p = 0.016), and platelet counts (r = -0.141, p = 0.011). Similar negative correlations were found for the 5-day average AQI. For pulmonary parameters, AQI was negatively correlated with FEF50% (r = -0.172, p = 0.002), FEF25% (r = -0.140, p = 0.012), FEV1/FVC% (r = -0.125, p = 0.024), and FEF75% (r = -0.124, p = 0.025). CONCLUSION Short-term exposure to moderate air pollution significantly impacts hematological parameters and specific pulmonary function indices, even in healthy individuals. These findings emphasize the importance of continuous air quality monitoring and public health interventions to mitigate the health risks of air pollution.
Collapse
Affiliation(s)
- Mehmet Kılınçer
- Niksar State Hospital, Family Medicine Clinic, Tokat, 60600, Turkey
| | - Ersan Gürsoy
- Department of Family Medicine, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey.
| |
Collapse
|
3
|
Craig E, Lin Y, Ge Y, Wang X, Murphy SK, Harrington DK, Miller RK, Thurston SW, Hopke PK, Barrett ES, O’Connor TG, Rich DQ, Zhang J. Associations of Gestational Exposure to Air Pollution and Polycyclic Aromatic Hydrocarbons with Placental Inflammation. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:672-680. [PMID: 39323894 PMCID: PMC11420950 DOI: 10.1021/envhealth.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/27/2024]
Abstract
Restricted fetal growth (RFG) is a leading contributor to perinatal mortality and has been associated with gestational exposure to air pollution, such as fine particulate matter (PM2.5), nitrogen dioxide (NO2), and polycyclic aromatic hydrocarbons (PAHs). This study examines the association between trimester-specific and weekly means of air pollution throughout gestation and placental inflammatory markers at delivery. In a prospective cohort study of 263 pregnant women in Rochester, NY, we measured interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in placental tissue and estimated gestational exposure to PM2.5 and NO2 using a high-resolution spatial-temporal model. Exposure to PAHs was estimated using urinary 1-hydroxypyrene (1-OHP) concentrations collected once per trimester. Using distributed lag models with a penalized spline function, each interquartile range (2.6 μg/m3) increase in PM2.5 concentration during gestational weeks 6-11 was associated with decreased placental IL-6 levels (-22.2%, 95% CI: -39.0%, -0.64%). Using multiple linear regression models, each interquartile range increase of 1-OHP was associated with an increase in TNF-α in the first trimester (58.5%, 95% CI: 20.7%, 74.2%), third trimester (22.9%, 95% CI: 0.04%, 49.5%), and entire pregnancy (29.6%, 95%CI: 3.9%,60.6%). Our results suggest gestational exposure to air pollution may alter the inflammatory environment of the placenta at delivery.
Collapse
Affiliation(s)
- Emily
A. Craig
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yan Lin
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yihui Ge
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Xiangtian Wang
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Susan K. Murphy
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Donald K. Harrington
- Department
of Psychiatry, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Richard K. Miller
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychology, University of Rochester, Rochester, New York 14642, United States
- Department
of Pediatrics, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Sally W. Thurston
- Department
of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Philip K. Hopke
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Emily S. Barrett
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department of Biostatistics
and Epidemiology, Rutgers School of Public
Health, Piscataway, New Jersey 08854, United States
| | - Thomas G. O’Connor
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychiatry, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Neuroscience, University of Rochester
School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychology, University of Rochester, Rochester, New York 14642, United States
| | - David Q. Rich
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Medicine, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Junfeng Zhang
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Bredeck G, Dos S Souza EJ, Wigmann C, Fomba KW, Herrmann H, Schins RPF. The influence of long-range transported Saharan dust on the inflammatory potency of ambient PM 2.5 and PM 10. ENVIRONMENTAL RESEARCH 2024; 252:119008. [PMID: 38663670 DOI: 10.1016/j.envres.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Although desert dust promotes morbidity and mortality, it is exempt from regulations. Its health effects have been related to its inflammatory properties, which can vary between source regions. It remains unclear which constituents cause this variability. Moreover, whether long-range transported desert dust potentiates the hazardousness of local particulate matter (PM) is still unresolved. We aimed to assess the influence of long-range transported desert dust on the inflammatory potency of PM2.5 and PM10 collected in Cape Verde and to examine associated constituents. During a reference period and two Saharan dust events, 63 PM2.5 and PM10 samples were collected at four sampling stations. The content of water-soluble ions, elements, and organic and elemental carbon was measured in all samples and endotoxins in PM10 samples. The PM-induced release of inflammatory cytokines from differentiated THP-1 macrophages was evaluated. The association of interleukin (IL)-1β release with PM composition was assessed using principal component (PC) regressions. PM2.5 from both dust events and PM10 from one event caused higher IL-1β release than PM from the reference period. PC regressions indicated an inverse relation of IL-1β release with sea spray ions in both size fractions and organic and elemental carbon in PM2.5. The PC with the higher regression coefficient suggested that iron and manganese may contribute to PM2.5-induced IL-1β release. Only during the reference period, endotoxin content strongly differed between sampling stations and correlated with inflammatory potency. Our results demonstrate that long-range transported desert dust amplifies the hazardousness of local air pollution and suggest that, in PM2.5, iron and manganese may be important. Our data indicate that endotoxins are contained in local and long-range transported PM10 but only explain the variability in inflammatory potency of local PM10. The increasing inflammatory potency of respirable and inhalable PM from desert dust events warrants regulatory measures and risk mitigation strategies.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany
| | - Eduardo J Dos S Souza
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany.
| |
Collapse
|
5
|
Park J, Jang J, So B, Lee K, Yeom D, Zhang Z, Shin WS, Kang C. Effects of Particulate Matter Inhalation during Exercise on Oxidative Stress and Mitochondrial Function in Mouse Skeletal Muscle. Antioxidants (Basel) 2024; 13:113. [PMID: 38247536 PMCID: PMC10812725 DOI: 10.3390/antiox13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Particulate matter (PM) has deleterious consequences not only on the respiratory system but also on essential human organs, such as the heart, blood vessels, kidneys, and liver. However, the effects of PM inhalation on skeletal muscles have yet to be sufficiently elucidated. Female C57BL/6 or mt-Keima transgenic mice were randomly assigned to one of the following four groups: control (CON), PM exposure alone (PM), treadmill exercise (EX), or PM exposure and exercise (PME). Mice in the three-treatment group were subjected to treadmill running (20 m/min, 90 min/day for 1 week) and/or exposure to PM (100 μg/m3). The PM was found to exacerbate oxidative stress and inflammation, both at rest and during exercise, as assessed by the levels of proinflammatory cytokines, manganese-superoxide dismutase activity, and the glutathione/oxidized glutathione ratio. Furthermore, we detected significant increases in the levels of in vivo mitophagy, particularly in the PM group. Compared with the EX group, a significant reduction in the level of mitochondrial DNA was recorded in the PME group. Moreover, PM resulted in a reduction in cytochrome c oxidase activity and an increase in hydrogen peroxide generation. However, exposure to PM had no significant effect on mitochondrial respiration. Collectively, our findings in this study indicate that PM has adverse effects concerning both oxidative stress and inflammatory responses in skeletal muscle and mitochondria, both at rest and during exercise.
Collapse
Affiliation(s)
- Jinhan Park
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Junho Jang
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Byunghun So
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Kanggyu Lee
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Dongjin Yeom
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin 300381, China;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
| | - Chounghun Kang
- Graduate School of Health and Exercise Science, Inha University, Incheon 22212, Republic of Korea; (J.P.); (J.J.); (B.S.); (K.L.); (D.Y.)
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Diao Q, Qin X, Hu N, Ling Y, Hua Q, Li M, Li X, Zhou H, Liu Y, Zeng H, Liang J, Wu Y, Jiang Y. Long non-coding RNAs mediate the association between short-term PM 2.5 exposure and circulating biomarkers of systemic inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122299. [PMID: 37541382 DOI: 10.1016/j.envpol.2023.122299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Although short-term fine particulate matter (PM2.5) exposure is associated with systemic inflammation, the effect of lncRNA on these association remains unknown. This study aims to investigate whether the plasma lncRNA mediate the effect of short-term PM2.5 exposure on systemic inflammation. In this cross-sectional study, plasma Clara cell protein 16 (CC16), interleukin 6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α) and lncRNA expression levels were measured in 161 adults between March and April in 2018 in Shijiazhuang, China. PM2.5 concentrations were estimated 0-3 days prior to the examination date and the moving averages were calculated. Multiple linear regressions were used to evaluate the associations between PM2.5, the four biomarkers and lncRNA expression levels. Mediation analyses were performed to explore the potential roles of lncRNA expression in these associations. The median concentration of PM2.5 ranged from 39.65 to 60.91 mg/m3 across different lag days. The most significant effects on IL-6 and TNF-α per interquartile range increase in PM2.5 were observed at lag 0-3 days, with increases of 0.70 pg/mL (95% CI: 0.33, 1.07) and 0.21 pg/mL (95% CI: 0.06, 0.36), respectively. While the associations between PM2.5 and IL-8 (0.68 pg/mL, 95% CI: 0.34, 1.02) and CC16 (3.86 ng/mL, 95% CI: 1.60, 6.13) were stronger at lag 0 day. Interestingly, a negative association between PM2.5 and the expression of four novel lncRNAs (lnc-ACAD11-1:1, lnc-PRICKLE1-4:1, lnc-GPR39-7:2, and lnc-MTRNR2L12-3:6) were observed at each lag days. Furthermore, these lncRNAs mediated the effects of PM2.5 on the four biomarkers, with proportions of mediation ranged from 2.27% (95% CI: 1.19%, 9.82%) for CC16 to 35.60% (95% CI: 17.16%, 175.45%) for IL-6. Our findings suggested that plasma lncRNA expression mediat the acute effects of PM2.5 exposure on systematic inflammation. These highlight a need to consider circulating lncRNA expression as biomarkers to reduce health risks associated with PM2.5.
Collapse
Affiliation(s)
- Qinqin Diao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaodi Qin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ningdong Hu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiuhan Hua
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yufei Liu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huixian Zeng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jihuan Liang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yongxian Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yiguo Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Déméautis T, Bouyssi A, Chapalain A, Guillemot J, Doublet P, Geloen A, George C, Menotti J, Glehen O, Devouassoux G, Bentaher A. Chronic Exposure to Secondary Organic Aerosols Causes Lung Tissue Damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6085-6094. [PMID: 37014236 DOI: 10.1021/acs.est.2c08753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, secondary organic aerosols (SOAs) emerged as a predominant component of fine particulate matter. However, the pathogenic mechanism(s) of SOAs are still poorly understood. Herein, we show that chronic exposure of mice to SOAs resulted in lung inflammation and tissue destruction. Histological analyses found lung airspace enlargement associated with massive inflammatory cell recruitment predominated by macrophages. Concomitant with such cell influx, our results found changes in the levels of a series of inflammatory mediators in response to SOA. Interestingly, we observed that the expression of the genes encoding for TNF-α and IL-6 increased significantly after one month of exposure to SOAs; mediators that have been largely documented to play a role in chronic pulmonary inflammatory pathologies. Cell culture studies confirmed these in vivo findings. Of importance as well, our study indicates increased matrix metalloproteinase proteolytic activity suggesting its contribution to lung tissue inflammation and degradation. Our work represents the first in vivo study, which reports that chronic exposure to SOAs leads to lung inflammation and tissue injury. Thus, we hope that these data will foster new studies to enhance our understanding of the underlying pathogenic mechanisms of SOAs and perhaps help in the design of therapeutic strategies against SOA-mediated lung injury.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Alexandra Bouyssi
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Annelise Chapalain
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Johann Guillemot
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Patricia Doublet
- CIRI, Centre International de Recherche en Infectiologie, Team Legionella Pathogenesis, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Alain Geloen
- University of Lyon, UMR Ecologie Microbienne Lyon (LEM), CNRS 5557, INRAE 1418, Université Claude Bernard Lyon 1, VetAgro Sup, Research Team "Bacterial Opportunistic Pathogens and Environment" (BPOE), 69622 Villeurbanne, France
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Jean Menotti
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
- Service de chirurgie digestive et endocrinienne, CHU de Lyon HCL - GH Sud, 165 Chemin du Grand Revoyet, 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
- Service de Pneumologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, UCB Lyon 1, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium - EA3738 (CICLY) - South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
8
|
Li S, Wei J, Hu Y, Liu Y, Hu M, Shi Y, Xue Y, Liu M, Xie W, Guo X, Liu X. Long-term effect of intermediate particulate matter (PM 1-2.5) on incident asthma among middle-aged and elderly adults: A national population-based longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160204. [PMID: 36403826 DOI: 10.1016/j.scitotenv.2022.160204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND There is insufficient evidence about the long-term effects of intermediate particulate matter (PM1-2.5) on asthma development in adults aged 45 years and above. This study aimed to investigate the relationship between long-term exposure to PM1-2.5 and the incidence of asthma in adults aged 45 years and above. METHODS A cohort study based on the China Health and Retirement Longitudinal Study (CHARLS) database was conducted to investigate the long-term effects of PM1-2.5 on self-reported asthma incidence in adults aged 45 years and above in China from 2011 to 2018. The PM concentrations were estimated using a high-resolution (1 km2) satellite-based spatiotemporal model. A covariate-adjusted generalized linear mixed model was used to analyze the relationship between long-term exposure to PM1-2.5 and the incidence of asthma. Effect modifications and sensitivity analysis were conducted. RESULTS After a 7-year follow-up, 103 (1.61 %) of the 6400 participants developed asthma. Each 10 μg/m3 increment in the 1-, 2-, 3-, and 4-year moving average concentrations of PM1-2.5 corresponded to a 1.82 [95 % confidence interval (CI):1.11-2.98], 1.95 (95 % CI: 1.24-3.07), 1.95 (95 % CI: 1.26-3.03) and 1.88 (95 % CI: 1.26-2.81) fold risk for incident asthma, respectively. A significant multiplicative interaction was observed between socioeconomic level and long-term exposure to PM1-2.5. Stratified analysis showed that smokers and those with lower socioeconomic levels were at higher risk of incident asthma related to PM1-2.5. Restricted cubic splines showed an increasing trend in asthma incidence with increasing PM1-2.5. Sensitivity analyses showed that our model was robust. CONCLUSION Long-term exposure to PM1-2.5 was positively associated with incident asthma in middle-aged and elderly individuals. Participants with a history of smoking and lower socioeconomic levels had a higher risk. More studies are warranted warrant to establish an accurate reference value of PM1-2.5 to mitigate the growing asthma burden.
Collapse
Affiliation(s)
- Shuting Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, USA
| | - Yaoyu Hu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Yuhong Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Meiling Hu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Yongxi Xue
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Mengmeng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Wenhan Xie
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Australia.
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| |
Collapse
|