1
|
Thuan PM, Nguyen MK, Nguyen DD. The potential release of microplastics from paint fragments: Characterizing sources, occurrence and ecological impacts. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:207. [PMID: 40375036 DOI: 10.1007/s10653-025-02525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025]
Abstract
Paint fragments have become a significant environmental pollutant in our era. These particles pose environmental and health risks, with microplastics (MPs) being a major component. This review critically examines the sources, occurrence, and ecological impacts of paint particles (PPs) on terrestrial and aquatic ecosystems. Land-based paint fragments from disturbed or deteriorating coatings on roads and buildings are carried to the ocean along with MP items through urban runoff, wastewater, and atmospheric deposition. In the ocean, paint fragments mainly originate from boating, shipping activities, and road markings. Beyond the direct effects on biota, biocides, and heavy metals from antifouling paint formulations can be released into the environment, impacting various organisms. Future research should focus on developing solutions to address the contamination of paint-related MPs in the environment. Efficient control of paint-originated MPs should encompass a blend of approaches, such as minimizing emissions via novel paint designs and deploying cutting-edge treatment technologies to intercept released particles.
Collapse
Affiliation(s)
- Pham Minh Thuan
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam
| | - Minh-Ky Nguyen
- Department of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Gialai Campus, Hamlet 1, Dien Phu Commune, Pleiku City, 600000, Vietnam.
| | - D Duc Nguyen
- Department of Civil & Energy Systems Engineering, Kyonggi University, Suwon, 16227, South Korea.
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
2
|
Diana ZT, Chen Y, Rochman CM. Paint: a ubiquitous yet disregarded piece of the microplastics puzzle. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:26-44. [PMID: 39887286 PMCID: PMC11790211 DOI: 10.1093/etojnl/vgae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 02/01/2025]
Abstract
Microplastics are widespread pollutants. Microplastics generated from the wear and tear of paints and coatings have recently been modeled to be a large source of microplastics to the environment. Yet, studies focused on microplastics broadly frequently overlook paint microplastics. In this article, we systematically reviewed the primary literature (turning up 53 relevant articles) on paint microplastic sources, identification methods, environmental concentrations, and toxicity to model organisms. Examples of sources of paint microplastics include paints from buildings and murals, crafts and hobbies, cars and roads, marine boats and structures, and industrial systems like pipes, sewers, and other infrastructure. Paint microplastics have been quantified in several marine samples from Europe and, to a lesser extent, East Asia. Reported concentrations of paint microplastics are up to 290,000 particles per kilogram of sediments, with the greatest concentration reported near a graffiti wall. Out of the toxicity studies testing paint microplastics, there have been 68 tested effects in total across all endpoints and organisms and 17 quantified lethal concentration 50% doses (ranging from 0.001 to 20 g/L). Of the tested effects, 45 observed endpoint values in the paint treatment were significantly different from the control (66%)-most of which were tests using antifouling paints. Overall, the number of studies on paint microplastics is small, limiting a holistic understanding of microplastics. Based on our synthesis of the state of the science on paint microplastics, we suggest a research agenda moving forward informed by research gaps.
Collapse
Affiliation(s)
- Zoie T Diana
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Yuying Chen
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Ardusso MG, Fernández Severini MD, Abasto B, Prieto G, Rimondino G, Malanca F, Buzzi NS. First multi-compartment approach to microplastics in an urbanized estuary of Argentina: The case of Magallana gigas. MARINE POLLUTION BULLETIN 2024; 208:117027. [PMID: 39332338 DOI: 10.1016/j.marpolbul.2024.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
This study assesses MP in water, sediment, gills, and digestive tract of the oyster Magallana gigas in three Bahía Blanca estuary sites, Argentina, using, Pollution Load Index (PLI) and SEM/EDX (Scanning Electron Microscopy with Energy-dispersive X-ray spectroscopy) and FTIR (Fourier-transform infrared spectroscopy) techniques. A total of 51 MPs were detected in water (mean: 16 items L-1) and 126 in sediments (mean: 1399 items Kg-1) with no significant differences between sites. In oysters, 186 MPs were found, with no significant differences in the MPs load between gills (mean: 2.41 items g-1 w.w), digestive tract (2.06 ± 2 items g-1 w.w), and the total tissues. Transparent fiber MPs were predominant, with cellulose, polyamides, polyethylene terephthalate and polyethylene being common polymers. SEM/EDX showed Si, Fe, Cl, Na, Ti, Al, K, Ca and suspended particulate matter on MP surfaces. The PLI indicated a low-risk level for estuary bivalves and water, suggesting minimal MPs impact.
Collapse
Affiliation(s)
- Maialen G Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - Benjamín Abasto
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - Germán Prieto
- Instituto de Física del Sur (IFISUR), CONICET/UNS, Av. Alem 1253, B8000, Bahía Blanca, Buenos Aires, Argentina; Departamento de Ingeniería, Universidad Nacional del Sur, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Guido Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fabio Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Natalia S Buzzi
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Xu X, He L, Huang F, Jiang S, Dai Z, Sun R, Li C. Fiddler crabs (Tubuca arcuata) as bioindicators of microplastic pollution in mangrove sediments. CHEMOSPHERE 2024; 364:143112. [PMID: 39153532 DOI: 10.1016/j.chemosphere.2024.143112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
In recent years, microplastics (MPs) have been widely found in the environment and pose potential risks to ecosystems, which attracted people's attention. Using bioindicators has been a great approach to understanding the pollution levels, bioavailability, and ecological risks of pollutants. However, only few studies have investigated MPs in mangrove ecosystems, with few bioindicators of MPs. Herein, the distribution of MPs in mangrove sediments and fiddler crabs (Tubuca arcuata) in mangroves was investigated. Results showed that the abundance values of MPs are 1160‒12,120 items/kg and 11-100 items/ind. in mangrove sediments and fiddler crabs, respectively. The dominant shape of MPs detected in mangrove sediments and fiddler crabs was fragments with sizes of 20‒1000 μm, larger MPs of 50-1000 μm were found in abundance. Polypropylene (PP), which is one of the most commonly used plastic materials, was the main polymer type. The distribution of MPs in fiddler crabs closely resembled that in surface mangrove sediments with a strong linear correlation (R2 > 0.8 and p < 0.05) between their abundance. Therefore, the MP contamination level in mangrove sediments can be determined by studying MP pollution in fiddler crabs. Moreover, the results of the target group index (TGI) indicated that fiddler crabs prefer feeding specific MPs in mangrove sediments. Our findings demonstrate the suitability of fiddler crabs as bioindicators for assessing MP pollution in mangrove sediments.
Collapse
Affiliation(s)
- Xiaohan Xu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei He
- Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fei Huang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shiqi Jiang
- School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Belli IM, Cavali M, Garbossa LHP, Franco D, Bayard R, de Castilhos Junior AB. A review of plastic debris in the South American Atlantic Ocean coast - Distribution, characteristics, policies and legal aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173197. [PMID: 38772490 DOI: 10.1016/j.scitotenv.2024.173197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024]
Abstract
The presence of plastics in the oceans has already become a pervasive phenomenon. Marine pollution by plastics surpasses the status of an emerging threat to become a well-established environmental problem, boosting research on this topic. However, despite many studies on the main seas and oceans, it is necessary to compile information on the South American Atlantic Ocean Coast to identify the lack of research and expand knowledge on marine plastic pollution in this region. Accordingly, this paper conducted an in-depth review of monitoring methods, sampling, and identification of macroplastics and microplastics (MPs) in water, sediments, and biota, including information on legal requirements from different countries as well as non-governmental initiatives. Brazil was the country with the highest number of published papers, followed by Argentina. MPs accounted for 75 % of the papers selected, with blue microfibers being the most common morphology, whereas PE and PP were the most abundant polymers. Also, a lack of standardization in the methodologies used was identified; however, the sites with the highest concentrations of MPs were the Bahía Blanca Estuary (Argentina), Guanabara Bay (Brazil), and Todos os Santos Bay (Brazil), regardless of the method applied. Regarding legislation, Uruguay and Argentina have the most advanced policies in the region against marine plastic pollution due to their emphasis on the life cycle and the national ban on certain single-use plastics. Therefore, considering its content, this expert review can be useful to assist researchers dealing with plastic pollution along the South American Atlantic Ocean Coast.
Collapse
Affiliation(s)
- Igor Marcon Belli
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil.
| | - Matheus Cavali
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | - Davide Franco
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Rémy Bayard
- INSA Lyon, DEEP, UR7429, 69621 Villeurbanne, France
| | - Armando Borges de Castilhos Junior
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
6
|
Aguirre-Sanchez A, Purca S, Cole M, Indacochea AG, Lindeque PK. Prevalence of microplastics in Peruvian mangrove sediments and edible mangrove species. MARINE POLLUTION BULLETIN 2024; 200:116075. [PMID: 38335630 DOI: 10.1016/j.marpolbul.2024.116075] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Mangrove ecosystems have been hypothesised as a potential sink of microplastic debris, which could pose a threat to mangrove biota and ecological function. In this field-study we establish the prevalence of microplastics in sediments and commercially-exploited Anadara tuberculosa (black ark) and Ucides occidentalis (mangrove crab) from five different zones in the mangrove ecosystem of Tumbes, Peru. Microplastic were evident in all samples, with an average of 726 ± 396 microplastics/kg for the sediment, although no differences between the different zones of the mangrove ecosystem were observed. Microplastic concentrations were 1.6± 1.1 items/g for the black ark and 1.9 ± 0.9 microplastics/g for the mangrove crab, with a difference in the microplastic abundance between species (p < 0.05), and between the gills and stomachs of the crab (p < 0.01). Human intake of microplastics from these species, for the population in Tumbes, is estimated at 431 items per capita per year. The outcomes of this work highlight that the mangrove ecosystem is widely contaminated with microplastics, presenting a concern for the marine food web and food security.
Collapse
Affiliation(s)
- Angelica Aguirre-Sanchez
- Facultad de Ciencias Veterinarias y Biológicas, Biología Marina, Laboratorio de Ecología Marina, Universidad Científica del Sur, Lima, Peru.
| | - Sara Purca
- Área Funcional de Investigaciones Marino Costeras (AFIMC), Dirección General de Investigaciones en Acuicultura (DGIA), Instituto del Mar del Peru (IMARPE), Callao, Peru
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom
| | - Aldo G Indacochea
- Facultad de Ciencias Veterinarias y Biológicas, Biología Marina, Laboratorio de Ecología Marina, Universidad Científica del Sur, Lima, Peru
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom
| |
Collapse
|
7
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
8
|
Compa M, Perelló E, Box A, Colomar V, Pinya S, Sureda A. Ingestion of microplastics and microfibers by the invasive blue crab Callinectes sapidus (Rathbun 1896) in the Balearic Islands, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119329-119342. [PMID: 37924412 PMCID: PMC10698140 DOI: 10.1007/s11356-023-30333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
The blue crab Callinectes sapidus Rathbun, 1896 is native to the western coasts of the Atlantic Ocean and is currently considered an invasive species in the Mediterranean Sea. In this study, we examined the stomach contents of C. sapidus to determine the frequency of occurrence of microplastics (MPs) and microfibers (MFs) in the Balearic Islands archipelago in the western Mediterranean Sea. A total of 120 individuals were collected from six locations between 2017 and 2020. Overall, 65.8% of the individuals had MPs and/or MFs particles with an average of 1.4 ± 1.6 particles ind.-1 of which an average of 1.0 ± 1.3 items ind.-1 were MFs and an average of 0.4 ± 0.8 items ind.-1 were MPs. In terms of type, fragments were the dominant type of MPs and the most common size of items ranged from between 0.5 and 1 mm (40%) followed by 1-5 mm (31%). The most prevalent polymers were low-density polyethylene (39%) and high-density polyethylene (26%). In terms of links to human activities, MP ingestion was positively correlated with an increase in drain pipes, whereas MF ingestion was positively correlated with an increase in sewage pipelines, providing evidence of potential sources and the bioavailability of these particles in various environments. This study confirms the widespread presence of MP and MF particles, even in areas that are currently managed under different protection statuses, in the stomach contents of invasive blue crab species throughout coastal communities.
Collapse
Affiliation(s)
- Montserrat Compa
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122, Palma, Balearic Islands, Spain.
| | - Esperança Perelló
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa Km 7,5, 07122, Palma, Balearic Islands, Spain
| | - Antoni Box
- Department of Agricultura, Ramaderia, Pesca, Caça I Cooperació Municipal, Consell Insular d'Eivissa, 07800, Eivissa, Spain
| | - Victor Colomar
- Consortium for the Recovery of Fauna of the Balearic Islands (COFIB), Government of the Balearic Islands, Ctra. Palma-Sineu Km 15.4, 07141, Santa Eugènia, Balearic Islands, Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa Km 7,5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
9
|
De-la-Torre GE, Dioses-Salinas DC, Pizarro-Ortega CI, Forero López AD, Fernández Severini MD, Rimondino GN, Malanca FE, Dobaradaran S, Aragaw TA, Mghili B, Ayala F. Plastic and paint debris in marine protected areas of Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165788. [PMID: 37524177 DOI: 10.1016/j.scitotenv.2023.165788] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Contamination with anthropogenic debris, such as plastic and paint particles, has been widely investigated in the global marine environment. However, there is a lack of information regarding their presence in marine protected areas (MPAs). In the present study, the abundance, distribution, and chemical characteristics of microplastics (MPs; <5 mm), mesoplastics (MePs; 5-25 mm), and paint particles were investigated in multiple environmental compartments of two MPAs from Peru. The characteristics of MPs across surface water, bottom sediments, and fish guts were similar, primarily dominated by blue fibers. On the other hand, MePs and large MPs (1-5 mm) were similar across sandy beaches. Several particles were composite materials consisting of multiple layers confirmed as alkyd resins by Fourier-transformed infrared spectroscopy, which were typical indicators of marine coatings. The microstructure of paint particles showed differentiated topography across layers, as well as different elemental compositions. Some layers displayed amorphous structures with Ba-, Cr-, and Ti-based additives. However, the leaching and impact of potentially toxic additives in paint particles require further investigation. The accumulation of multiple types of plastic and paint debris in MPAs could pose a threat to conservation goals. The current study contributed to the knowledge regarding anthropogenic debris contamination in MPAs and further elucidated the physical and chemical properties of paint particles in marine environments. While paint particles may look similar to MPs and MePs, more attention should be given to these contaminants in places where intense maritime activity takes place.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fabio Ernesto Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | - Félix Ayala
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
10
|
Aminah IS, Ikejima K, Vermeiren P. Ingestion and translocation of microplastics in tissues of deposit-feeding crabs (Grapsoidea, Ocypodoidea) in Kochi estuary, Japan. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106252. [PMID: 37944348 DOI: 10.1016/j.marenvres.2023.106252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Estuaries contain some of the highest concentrations of accumulated microplastics (MPs) that can be ingested by abundant deposit-feeding crabs. We investigate MPs in gill, hepatopancreatic, and gastrointestinal tissues of seven intertidal crab species in Kokubu River, Kochi, Japan. By applying a reliable method that considers limits of detection and quantification, we report MPs in 63 of 116 crabs (>50%), with a mean of 3.2 MPs individual-1. Concentrations are greatest in gastrointestinal tracts (62.15%), suggesting that feeding is the main route for MP uptake. PET is the dominant polymer (44%), and fragments are the dominant shape (50%-77%). A greater MPs burden g-1 body weight is reported for deposit-feeding small ocypodid crabs than for larger herbivorous/omnivorous grapsoid crabs. Factors possibly influencing MP uptake by crabs include feeding habit, crab size, and ambient MP composition.
Collapse
Affiliation(s)
- Ibrahim Siti Aminah
- Laboratory of Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi 783-8502, Japan; United Graduate School of Agriculture Sciences, Ehime University, Matsuyama, Japan
| | - Kou Ikejima
- Laboratory of Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi 783-8502, Japan; United Graduate School of Agriculture Sciences, Ehime University, Matsuyama, Japan.
| | - Peter Vermeiren
- Laboratory of Coastal Ecology and Conservation, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku City, Kochi 783-8502, Japan; Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800 Bø, Norway
| |
Collapse
|
11
|
Truchet DM, Buzzi NS, Negro CL, Palavecino CC, Mora MC, Marcovecchio JE. Unraveling the depuration mechanisms of metals in the burrowing crab (Neohelice granulata Dana, 1852): Biochemical biomarkers, metal-rich granules and bioaccumulation patterns. MARINE POLLUTION BULLETIN 2023; 196:115638. [PMID: 37839132 DOI: 10.1016/j.marpolbul.2023.115638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
We studied the depuration mechanisms of metals (Cd, Cu, Pb, Zn, Mn, Ni, Cr, Fe) in Neohelice granulata, from sites with different human impacts (PC, a more impacted site and VM, a less impacted one). Our objectives included assessing metal concentrations (essential and non-essential) before and after depuration treatment, evaluating biochemical biomarkers (non-enzymatic and enzymatic) pre and post-treatment, and determining the role of metal-rich granules (MRG) in depuration. We observed variability in metals and biomarkers post-depuration, with no significant differences observed in PC, while Cd and Mn increased and Ni, Cu, and Fe decreased in VM. Integrated biomarkers' response indicated the prevailing antioxidant capacity in depurated organisms. Lipid peroxidation changes were insignificant, except in depurated-VM where values increased. MRG showed a significant decrease only for Mn and Fe, suggesting they were not the primary depuration structure. We concluded that depuration might depend on the species, gender and contamination history.
Collapse
Affiliation(s)
- D M Truchet
- Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), CCT- CONICET, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Grupo de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP). Dean Funes 3350, B7602AYL Mar del Plata, Argentina.
| | - N S Buzzi
- Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), CCT- CONICET, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina
| | - C L Negro
- Escuela Superior de Sanidad, Facultad de Ciencias Biológicas y Bioquímicas, Universidad Nacional del Litoral (ESS, FBCB-UNL), Paraje el Pozo s/n, CP 3000 Ciudad de Santa Fe, Santa Fe, Argentina; Instituto Nacional de Limnología (INALI, CONICET-UNL), Paraje el Pozo s/n, CP 3000 Ciudad de Santa Fe, Santa Fe, Argentina
| | - C C Palavecino
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET, CONICET-UNL), R.P. Kreder 2805, Esperanza, Santa Fe, Argentina
| | - M C Mora
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Paraje el Pozo s/n, CP 3000 Ciudad de Santa Fe, Santa Fe, Argentina
| | - J E Marcovecchio
- Área de Oceanografía Química, Instituto Argentino de Oceanografía (IADO), CCT- CONICET, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Universidad Tecnológica Nacional (UTN- FRBB), 11 de abril 461, B8000LMI Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
12
|
De-la-Torre GE, Pizarro-Ortega CI, Dioses-Salinas DC, Ribeiro VV, Urizar Garfias Reyes DF, Ben-Haddad M, Rakib MRJ, Dobaradaran S. Micro- and mesoplastic pollution along the coast of Peru. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27707-6. [PMID: 37199842 DOI: 10.1007/s11356-023-27707-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Peru suffers from poor solid waste and coastal management, as well as evidenced plastic pollution in various forms. However, studies in Peru focusing on small plastic debris (i.e., meso- and microplastics) are still limited and inconclusive. Thus, the present study investigated the abundance, characteristics, seasonality, and distribution of small plastic debris along the coast of Peru. The abundance of small plastic debris is predominantly driven by specific locations, where a source of contamination is present, rather than presenting seasonal patterns. Meso- and microplastics were strongly correlated in both seasons (summer and winter), suggesting meso-plastic constantly breaking down as microplastic sources. Additionally, heavy metals (e.g., Cu, Pb) were found in low concentrations (mean concentrations < 0.4%) on the surface of some mesoplastics. Here, we provided a baseline on the multiple factors involving small plastic debris on the Peruvian coast and preliminarily identify associated contaminants.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente Y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | | | - Damarisch Fernanda Urizar Garfias Reyes
- Círculo de Investigación en Contaminación Por Plásticos, Universidad Nacional Agraria La Molina, Lima, Peru
- Grupo de Investigación Salud Pública, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
13
|
Forero-López AD, Brugnoni LI, Abasto B, Rimondino GN, Lassalle VL, Ardusso MG, Nazzarro MS, Martinez AM, Spetter CV, Biancalana F. Plastisphere on microplastics: In situ assays in an estuarine environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129737. [PMID: 35988489 DOI: 10.1016/j.jhazmat.2022.129737] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
In this study, the influence of the plastisphere on metals accumulation and weathering processes of polystyrene (PSMPs) and nylon microplastics (NyMPs) in polluted waters during a 129 day-assay were studied. MPs were characterized through scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), X-ray diffraction (XRD), attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectroscopy, contact angle, and thermogravimetric analysis (TGA). Also Cr, Mn, Zn, Cd, Pb, and Cu in the plastisphere on MPs were analyzed during the assay. Potentially pathogenic Vibrio, Escherichia coli, and Pseudomonas spp. were abundant in both MPs. Ascomycota fungi (Phona s.l., Alternaria sp., Penicillium sp., and Cladosporium sp.), and yeast, were also identified. NyMPs and PSMPs exhibited a decrease in the contact angle and increased their weights. SEM/EDX showed weathering signs, like surface cracks and pits, and leaching TiO2 pigments from NyMPs after 42 days. XRD displayed a notorious decrease in NyMPs crystallinity, which could alter its interaction with external contaminants. Heavy metal accumulation on the plastisphere formed on each type of MPs increased over the exposure time. After 129 days of immersion, metals concentrations in the plastisphere on MPs were in the following order Cr ˃ Mn ˃ Zn ˃ Cu ˃ Pb ˃ Cd, demonstrating how the biofilm facilitates metal mobilization. The results of this study lead to a better understanding of the impact of marine plastic debris as vectors of pathogens and heavy metals in coastal environments.
Collapse
Affiliation(s)
- A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina.
| | - L I Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (UNS-CONICET), San Juan, 670 8000 Bahía Blanca, Argentina
| | - B Abasto
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - V L Lassalle
- Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina; Instituto Nacional de Química del Sur (INQUISUR), CONICET/UNS, CCT-Bahía Blanca, Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - M G Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| | - M S Nazzarro
- Instituto de Física Aplicada "Dr. Jorge Andres Zgrablich" (INFAP),CCT-CONICET, San Luis, Almte. Brown 869, D5700ANU San Luis, Argentina
| | - A M Martinez
- Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| | - F Biancalana
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, B8000FWB Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
14
|
Capparelli MV, Gómez-Ponce MA, Borges-Ramírez MM, Osten JRV, Celis-Hernández O, Briceño-Vera AE, Ávila E, Moulatlet GM. Ecological traits influence the bioaccumulation of microplastics in commercially important estuarine crabs from the southeastern Gulf of Mexico. MARINE POLLUTION BULLETIN 2022; 183:114088. [PMID: 36063667 DOI: 10.1016/j.marpolbul.2022.114088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
We assessed microplastics (MPs) contamination in water, sediments, and tissues (gills, digestive tract, and muscle) of two intertidal crab species with different ecological traits and commercial importance (Menippe mercenaria and Callinectes sapidus), from a coastal lagoon in the southeastern Gulf of Mexico. There were significant differences between MP abundances in the abiotic matrices and between crab species. The burrower, sedentary and carnivorous M. mercenaria bioaccumulates 50 % more MPs than the free-swimming, omnivorous C. sapidus. However, no differences were observed between species' tissues. Fragments were the predominant shape in the tissues of both species, with the exception in the digestive tract of M. mercenaria. We identified polyethylene, and polyethylene terephthalate in water samples and Silopren® in sediment. In both crab species, Silopren and polyethylene predominated. Differences in ecological traits resulted in different bioaccumulation patterns in intertidal crabs.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico.
| | - Mario A Gómez-Ponce
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico
| | - Merle M Borges-Ramírez
- El Colegio de la Frontera Sur (ECOSUR), Avenida Rancho, Polígono 2-A, Ciudad Industrial Lerma, CP 24500 Campeche, Campeche, Mexico
| | - Jaime Rendón-von Osten
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Omar Celis-Hernández
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, 03940 Ciudad de México, Mexico
| | - Antony E Briceño-Vera
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico
| | - Enrique Ávila
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico
| | - Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| |
Collapse
|