1
|
Robazza A, Neumann A. Energy recovery from syngas and pyrolysis wastewaters with anaerobic mixed cultures. BIORESOUR BIOPROCESS 2024; 11:76. [PMID: 39066992 PMCID: PMC11283448 DOI: 10.1186/s40643-024-00791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
The anaerobic digestion of aqueous condensate from fast pyrolysis is a promising technology for enhancing carbon and energy recovery from waste. Syngas, another pyrolysis product, could be integrated as a co-substrate to improve process efficiency. However, limited knowledge exists on the co-fermentation of pyrolysis syngas and aqueous condensate by anaerobic cultures and the effects of substrate toxicity. This work investigates the ability of mesophilic and thermophilic anaerobic mixed cultures to co-ferment syngas and the aqueous condensate from either sewage sludge or polyethylene plastics pyrolysis in semi-batch bottle fermentations. It identifies inhibitory concentrations for carboxydotrophic and methanogenic reactions, examines specific component removal and assesses energy recovery potential. The results show successful co-fermentation of syngas and aqueous condensate components like phenols and N-heterocycles. However, the characteristics and load of the aqueous condensates affected process performance and product formation. The toxicity, likely resulting from the synergistic effect of multiple toxicants, depended on the PACs' composition. At 37 °C, concentrations of 15.6 gCOD/gVSS and 7.8 gCOD/gVSS of sewage sludge-derived aqueous condensate inhibited by 50% carboxydotrophic and methanogenic activity, respectively. At 55 °C, loads between 3.9 and 6.8 gCOD/gVSS inhibited by 50% both reactions. Polyethylene plastics condensate showed higher toxicity, with 2.8 gCOD/gVSS and 0.3 gCOD/gVSS at 37 °C decreasing carboxydotrophic and methanogenic rates by 50%. At 55 °C, 0.3 gCOD/gVSS inhibited by 50% CO uptake rates and methanogenesis. Increasing PAC loads reduced methane production and promoted short-chain carboxylates formation. The recalcitrant components in sewage sludge condensate hindered e-mol recovery, while plastics condensate showed high e-mol recoveries despite the stronger toxicity. Even with challenges posed by substrate toxicity and composition variations, the successful conversion of syngas and aqueous condensates highlights the potential of this technology in advancing carbon and energy recovery from anthropogenic waste streams.
Collapse
Affiliation(s)
- Alberto Robazza
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology, KIT, 76131, Karlsruhe, Germany
| | - Anke Neumann
- Institute of Process Engineering in Life Sciences 2: Electro Biotechnology, Karlsruhe Institute of Technology, KIT, 76131, Karlsruhe, Germany.
| |
Collapse
|
2
|
Bahadur A, Zhang L, Guo W, Sajjad W, Ilahi N, Banerjee A, Faisal S, Usman M, Chen T, Zhang W. Temperature-dependent transformation of microbial community: A systematic approach to analyzing functional microbes and biogas production. ENVIRONMENTAL RESEARCH 2024; 249:118351. [PMID: 38331158 DOI: 10.1016/j.envres.2024.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
The stability and effectiveness of the anaerobic digestion (AD) system are significantly influenced by temperature. While majority research has focused on the composition of the microbial community in the AD process, the relationships between functional gene profile deduced from gene expression at different temperatures have received less attention. The current study investigates the AD process of potato peel waste and explores the association between biogas production and microbial gene expression at 15, 25, and 35 °C through metatranscriptomic analysis. The production of total biogas decreased with temperature at 15 °C (19.94 mL/g VS), however, it increased at 35 °C (269.50 mL/g VS). The relative abundance of Petrimonas, Clostridium, Aminobacterium, Methanobacterium, Methanothrix, and Methanosarcina were most dominant in the AD system at different temperatures. At the functional pathways level 3, α-diversity indices, including Evenness (Y = 5.85x + 8.85; R2 = 0.56), Simpson (Y = 2.20x + 2.09; R2 = 0.33), and Shannon index (Y = 1.11x + 4.64; R2 = 0.59), revealed a linear and negative correlation with biogas production. Based on KEGG level 3, several dominant functional pathways associated with Oxidative phosphorylation (ko00190) (25.09, 24.25, 24.04%), methane metabolism (ko00680) (30.58, 32.13, and 32.89%), and Carbon fixation pathways in prokaryotes (ko00720) (27.07, 26.47, and 26.29%), were identified at 15 °C, 25 °C and 35 °C. The regulation of biogas production by temperature possibly occurs through enhancement of central function pathways while decreasing the diversity of functional pathways. Therefore, the methanogenesis and associated processes received the majority of cellular resources and activities, thereby improving the effectiveness of substrate conversion to biogas. The findings of this study illustrated the crucial role of central function pathways in the effective functioning of these systems.
Collapse
Affiliation(s)
- Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Cryosphere and Eco-Environment Research Station of Shule River Headwaters, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lu Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Guo
- Lanzhou Xinrong Environmental Energy Engineering Technology Co. Ltd. Lanzhou 730000, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
Awasthi MK, Rajendran K, Vigneswaran V, Kumar V, Dregulo AM, Singh V, Kumar D, Sindhu R, Zhang Z. Exploration of upgrading of biomass and its paradigmatic synthesis: Future scope for biogas exertion. SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 38:101450. [DOI: 10.1016/j.scp.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Basar IA, Stokes A, Eskicioglu C. Evaluation of on-site biological treatment options for hydrothermal liquefaction aqueous phase derived from sludge in municipal wastewater treatment plants. WATER RESEARCH 2024; 252:121206. [PMID: 38295457 DOI: 10.1016/j.watres.2024.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
Aerobic treatment, mesophilic anaerobic digestion, thermophilic anaerobic digestion, and dark fermentation were evaluated for on-site biological treatment of municipal sludge derived HTL aqueous. For all four described batch test scenarios, municipal sludge-derived HTL aqueous samples obtained under 290-360 °C and 0-30 min retention time were used. In the aerobic respirometric tests, HTL aqueous samples resulted in a five-day biochemical oxygen demand range of 40.75 g/L (350 °C-25.6 min) to 54 g/L (325 °C-0 min). The calculated aerobic biodegradability index showed that approximately 50 % of the organics in HTL aqueous were easily biodegradable. Mesophilic and thermophilic biochemical methane potential tests resulted in specific yields of 151-179 mL CH4/g chemical oxygen demand (COD) and 103-122 mL CH4/g COD, respectively. HTL aqueous obtained under 360 °C-15 min condition caused total inhibition in both mesophilic and thermophilic anaerobic digestion. Possible causes for this inhibition were pyridine, pyrrolidinone, piperidinone, pyridinol, and phenolic compounds, which were higher in abundance in the 360 °C-15 min sample. HTL aqueous was found unfit for hydrogen production in dark fermentation due to inhibitory composition. In summary, on-site biological treatment of HTL aqueous was found to be most suitable under aerobic and mesophilic anaerobic conditions.
Collapse
Affiliation(s)
- Ibrahim Alper Basar
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, Canada
| | - Abigail Stokes
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, Canada
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, Canada.
| |
Collapse
|
5
|
Liu M, Mahata C, Wang Z, Kumar S, Zheng Y. Comparative exploration of biological treatment of hydrothermal liquefaction wastewater from sewage sludge: Effects of culture, fermentation conditions, and ammonia stripping. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119527. [PMID: 37951111 DOI: 10.1016/j.jenvman.2023.119527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Hydrothermal liquefaction wastewater from sewage sludge (sludge HTLWW) is an emerging waste stream that requires treatment before being discharged into the environment. Biological treatment of sludge HTLWW is an attractive option due to the low cost and operational flexibility. In this study, we investigated and compared the performance of three bacterial strains and four fungal strains for biodegradation of sludge HTLWW. Our screening experiments established pH and mineral supplementation (iron, magnesium, calcium, and phosphorus) conditions that greatly improved COD removal and chemical compound degradation by the microbes. An ammonia stripping pretreatment improved COD removal efficiency of Rhodococci jostii RHA1 by 44%. All tested bacterial strains can tolerate 10× dilution of HTLWW and remove 35-44% of COD in 2-15 days, while all tested fungal strains were able to tolerate 20× dilution and were better at degrading phenolic compounds than bacteria. HTLWW treatment with biomass pellets of fungus Aspergillus niger NRRL 2001 achieved the best COD removal efficiency of 47% in 12 days without the need of nutrient supplementation. Comparisons on chemical compound degradation by the tested microbes suggested that organic acids in HTLWW were highly degradable, followed by phenolic compounds. N-heterocyclic compounds were resistant to biodegradation and were removed by 38%. This study demonstrated pure culture biological treatment of sludge HTLWW with diverse types of microorganisms, which would guide the culture development and bioprocess parameter optimization for treating HTLWW of different compositions.
Collapse
Affiliation(s)
- Meicen Liu
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS, 66506, USA.
| | - Chandan Mahata
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA, 24061, USA
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA, 24061, USA
| | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS, 66506, USA.
| |
Collapse
|