1
|
Chen H, Tang M, He L, Xiao X, Yang F, He Q, Sun S, Gao Y, Zhou L, Li Y, Sun J, Zhang W. Exploring the impact of fulvic acid on electrochemical hydrogen-driven autotrophic denitrification system: Performance, microbial characteristics and mechanism. BIORESOURCE TECHNOLOGY 2024; 412:131432. [PMID: 39236909 DOI: 10.1016/j.biortech.2024.131432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/(L·d) with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.
Collapse
Affiliation(s)
- Haolin Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Meiyi Tang
- China West Construction Hunan Group Co. Ltd., Changsha 410114, China
| | - Liang He
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Xinxin Xiao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Fei Yang
- Hunan Hengyong Expressway Construction and Development Co. Ltd., Hengyang 421600, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology/Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
2
|
Cai X, Li J, Wu H, Yang S, You Y, Li D, Xing W, Zou C, Guo X, Li J, Qin H. Using rice straw-augmented ecological floating beds to enhance nitrogen removal in carbon-limited wastewater. BIORESOURCE TECHNOLOGY 2024; 402:130785. [PMID: 38703956 DOI: 10.1016/j.biortech.2024.130785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Agricultural biomass used as solid carbon substrates in ecological floating beds (EFBs) has been proven to be applicable in nitrogen removal for carbon-limited wastewater treatment. However, the subtle interactions among plants, rhizosphere microorganisms, and supplementary carbon sources have not been thoroughly studied. This study combined rice straw mats with different aquatic macrophytes in EFBs to investigate denitrification efficiency in carbon-limited eutrophic waters. Results showed that rice straw significantly enhanced the nitrogen removal efficiency of EFBs, while enriching nitrogen-fixing and denitrifying bacteria (such as Rhizobium, Rubrivivax, and Rhodobacter, etc.). Additionally, during the denitrification process in EFBs, rice straw can release humic acid-like fraction as electron donors to support the metabolic activities of microorganisms, while aquatic macrophytes provide a more diverse range of dissolved organic matters, facilitating a sustainable denitrification process. These findings help to understand the synergistic effect of denitrification processes within wetland ecosystems using agricultural biomass.
Collapse
Affiliation(s)
- Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jianying Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Haoping Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Siyu Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yi You
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chunping Zou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xiaoyu Guo
- Key Laboratory of Environmental Toxicology of Haikou, Hainan University, Haikou 570228, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongjie Qin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.
| |
Collapse
|
3
|
Yao J, Qi J, Sun J, Qian X, Chen J. Enhancement of nitrate reduction in microbial fuel cells by acclimating biocathode potential: Performance, microbial community, and mechanism. BIORESOURCE TECHNOLOGY 2024; 398:130522. [PMID: 38437965 DOI: 10.1016/j.biortech.2024.130522] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The enhancement of nitrate reduction in microbial fuel cells (MFCs) by acclimating biocathode potential was studied. An MFC system was started up, and measured by cyclic voltammetry to determine a suitable potential region for acclimating biocathode. The experimental results revealed that potential acclimation could efficiently improve denitrification performance by relieving the phenomenon of nitrite accumulation, and optimum performance was obtained at -0.4 V with a total nitrogen removal efficiency of 87.4 %. Subsequently, the characteristics of electron transfer behaviors were measured, suggesting that a positive correlation between nitrate reduction and the contribution of direct electron transfer emerged. Furthermore, a denitrification mechanism was proposed. The results indicated that potential acclimation was conducive to enhancing denitrifying enzyme activity and that the electron transport system activity could be increased by 5.8 times. This study provides insight into the electron transfer characteristics and denitrification mechanisms in MFCs for nitrate reduction at specific acclimatization potentials.
Collapse
Affiliation(s)
- Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiayi Qi
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiamo Sun
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaofei Qian
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China; Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
4
|
Wu H, Li A, Yang X, Wang J, Liu Y, Zhan G. The research progress, hotspots, challenges and outlooks of solid-phase denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159929. [PMID: 36356784 DOI: 10.1016/j.scitotenv.2022.159929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Anjie Li
- College of Grassland and Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
5
|
Bi Z, Zhang Q, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Perspective on inorganic electron donor-mediated biological denitrification process for low C/N wastewaters. BIORESOURCE TECHNOLOGY 2022; 363:127890. [PMID: 36075347 DOI: 10.1016/j.biortech.2022.127890] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Nitrate is the most common water environmental pollutant in the world. Inorganic electron donor-mediated denitrification is a typical process with significant advantages in treating low carbon-nitrogen ratio water and wastewater and has attracted extensive research attention. This review summarizes the denitrification processes using inorganic substances, including hydrogen, reductive sulfur compounds, zero-valent iron, and iron oxides, ammonium nitrogen, and other reductive heavy metal ions as electron donors. Aspects on the functional microorganisms, critical metabolic pathways, limiting factors and mathematical modeling are outlined. Also, the typical inorganic electron donor-mediated denitrification processes and their mechanism, the available microorganisms, process enhancing approaches and the engineering potentials, are compared and discussed. Finally, the prospects of developing the next generation inorganic electron donor-mediated denitrification process is put forward.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 10076, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
6
|
Development of Bio-Electrochemical Reactor for Groundwater Denitrification: Effect of Electric Current and Water Hardness. SUSTAINABILITY 2022. [DOI: 10.3390/su14159454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitrate-nitrogen (NO3-N) contaminating groundwater is an environmental issue in many areas, and is difficult to treat by simple processes. A bio-electrochemical reactor (BER) using copper wire and graphite plate was developed to purify the NO3-N-contaminated groundwater. The low (of 10 mA) and high (of 20 mA) electric currents were applied to the BERs, and various influent hardness levels from 20 to 80 mg/L as CaCO3 due to groundwater characteristics were supplied to clarify the total nitrogen removal efficiency and NO3-N removal mechanisms. In the BER-10, the bio-electrochemical reactions caused 85% of total nitrogen to be removed through heterotrophic and autohydrogenotrophic denitrification in the suspended sludge and biofilm. However, the chemical deposit occurring at the cathode from water hardness affected the decreasing denitrification performance; 12.6% of Mg and 8.8% of Ca elements were observed in the biofilm. The enhancement of electrochemical reactions in the BER-20 caused integrating electrochemical and bio-electrochemical reactions; the NO3-N was electrochemically reduced to NO2-N, and it was further biologically reduced to N2. A better total nitrogen removal of 95% was found; although, a larger deposit of Mg (22.8%) and Ca (10.8%) was observed. The relatively low dissolved H2 in the BER-20 confirmed that the deposit affected the decreasing gaseous H2 transfer and inhibition of autohydrogenotrophic denitrification in the suspended sludge. According to the microbial analysis, both heterotrophic and autohydrogenotrophic denitrification were obtained in the suspended sludge of both BERs; Nocadia (26.8%) was the most abundant genus in the BER-10, whereas Flavobacterium (27.1%) and Nocadia (25.0%) were the dominant genera in the BER-20.
Collapse
|