1
|
Sorino D, de Vizia P, Baldelli M, Bartolucci L, Cordiner S, Falsetti A, Lombardi F, Mulone V. Pyrolysis of mixed contaminated plastic wastes: Assessing the influence of polymers composition, temperature and residence time. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 201:114793. [PMID: 40222286 DOI: 10.1016/j.wasman.2025.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/02/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
The European Union's recycling objectives of 50 % for packaging by 2025 and 55 % by 2030 are still far from the current recycling rate of 37.8 %. Thermochemical recycling via pyrolysis might improve recovery rates, especially for challenging post-consumer dirty and contaminated plastics. Many studies focus on the pyrolysis of virgin plastics and artificial mixtures of these plastics to simulate real-world mixed plastic waste scenarios. This study examines a sample of pre-sorting waste from an Italian composting plant to represent real plastic mixtures within the collection chain. This waste contains plastics, organics, paper, and others, with plastics making up 72.18 % of the sample, primarily identified as LDPE, PP, and HDPE. The plastics were tested individually and as a mixture, mirroring the concentrations observed within the original sample, in a bench-scale semi-batch reactor at varying temperatures (420 °C, 470 °C, and 520 °C) and residence times. The analysis indicated that temperature and residence time considerably influence product yields and composition, although temperature has a more dominant effect. Wax analysis showed paraffins and olefins as the primary components, with a peak carbon number distribution in the C14-C19 range at elevated temperatures. Contaminant analysis of wax identified substantial levels of halogens and metals, posing challenges for downstream processes. Results from the mixture tests revealed that the product yields of individual polymers could be predicted as a linear combination of their behaviors, with an accuracy within a 10 % margin of error across the examined temperature range and lower residence times.
Collapse
Affiliation(s)
- D Sorino
- Tor Vergata University of Rome, Department of Civil Engineering and Computer Science Engineering, Rome, Italy
| | - P de Vizia
- Tor Vergata University of Rome, Department of Civil Engineering and Computer Science Engineering, Rome, Italy
| | - M Baldelli
- Tor Vergata University of Rome, Department of Industrial Engineering, Rome, Italy
| | - L Bartolucci
- Tor Vergata University of Rome, Department of Industrial Engineering, Rome, Italy
| | - S Cordiner
- Tor Vergata University of Rome, Department of Industrial Engineering, Rome, Italy
| | - A Falsetti
- Tor Vergata University of Rome, Department of Civil Engineering and Computer Science Engineering, Rome, Italy
| | - F Lombardi
- Tor Vergata University of Rome, Department of Civil Engineering and Computer Science Engineering, Rome, Italy
| | - V Mulone
- Tor Vergata University of Rome, Department of Industrial Engineering, Rome, Italy
| |
Collapse
|
2
|
Kibuta C, Akin O, Withoeck D, He Q, Schmidt M, Varghese RJ, Schlummer M, Meester SD, Calik FD, Denton M, Buettner A, Van Geem KM. Assessing the feasibility of ocean plastic waste as secondary feedstock for the production of base chemicals. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 195:167-176. [PMID: 39923654 DOI: 10.1016/j.wasman.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Plastic pollution in the marine environment is a growing concern, with around 10 % of globally produced plastics ending up in oceans annually. Most ocean plastics are incinerated for energy recovery if harvested, since harvesting remains a key challenge. This study evaluated the feasibility of recovering base chemicals from the polyethylene (PE) and polypropylene (PP) fraction of ocean plastic waste through a single-step olefin production method. The approach employed a micropyrolyzer unit coupled with comprehensive two-dimensional gas chromatography (µP-GC × GC) and dual detectors to analyze gaseous product yields. Elemental and matrix analyses of the waste were performed using CHNS/O elemental analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and Combustion Ion Chromatography (CIC) to identify potentially harmful components. We present here the yields of critical light olefins such as ethylene (13 wt% from PE samples, 9 wt% from PP samples) and propylene (10 wt% from PE samples, 17 wt% from PP samples) at 700 °C. Pyrolysis products detected in PP samples included 24 wt% of branched olefins, whereas 54 wt% of linear olefins were detected in PE samples. The aromatics detected in the samples ranged between 1-3 wt%, with naphthene levels ranging between 4-7 wt%. Furthermore, metal contaminants, such asnickel, silicon, copper, iron, sodium, calcium, and potassium, were detected from the waste via ICP-OES, and chlorine levels via CIC. The results suggest that ocean plastic waste could serve as feedstock for production of light olefins, provided pre- and post-treatment procedures are implemented to mitigate contamination.
Collapse
Affiliation(s)
- Christina Kibuta
- Department of Polymer recycling and process development Fraunhofer Institute for Process Engineering and Packaging IVV Freising Germany; Laboratory for Chemical Technology (LCT) Ghent University Gent Belgium; Chair of Aroma and Smell Research Department of Chemistry and Pharmacy Friedrich-Alexander-University Erlangen-Nürnberg Erlangen Germany
| | - Oğuzhan Akin
- Laboratory for Chemical Technology (LCT) Ghent University Gent Belgium
| | - Daniël Withoeck
- Laboratory for Chemical Technology (LCT) Ghent University Gent Belgium
| | - Qing He
- Laboratory for Chemical Technology (LCT) Ghent University Gent Belgium
| | - Mario Schmidt
- Department of Polymer recycling and process development Fraunhofer Institute for Process Engineering and Packaging IVV Freising Germany
| | | | - Martin Schlummer
- Department of Polymer recycling and process development Fraunhofer Institute for Process Engineering and Packaging IVV Freising Germany
| | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE) Department of Green Chemistry and Technology Ghent University Belgium
| | - Fatma Defne Calik
- Laboratory for Chemical Technology (LCT) Ghent University Gent Belgium
| | - Mackenzie Denton
- Laboratory for Chemical Technology (LCT) Ghent University Gent Belgium
| | - Andrea Buettner
- Department of Polymer recycling and process development Fraunhofer Institute for Process Engineering and Packaging IVV Freising Germany; Chair of Aroma and Smell Research Department of Chemistry and Pharmacy Friedrich-Alexander-University Erlangen-Nürnberg Erlangen Germany
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT) Ghent University Gent Belgium.
| |
Collapse
|
3
|
Sebe E, Nagy G, Kállay AA. Steam gasification of char derived from refuse-derived fuel pyrolysis: adsorption behaviour in phenol solutions. ENVIRONMENTAL TECHNOLOGY 2024; 45:5025-5036. [PMID: 37970831 DOI: 10.1080/09593330.2023.2283794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
The increasing waste generation trends resulted in growing attention to the technologies that aim to reduce or prevent landfilling. The pyrolysis and gasification of refuse-derived fuel (RDF) allow waste to be turned into new raw materials, like pyrolysis gas and syngas. However, the wet gas cleaning processes result in the production of highly contaminated liquid waste. Phenolic compounds are common constituents of this wastewater and often appear in the wastewater of other industries as well. In this research, the laboratory-scale steam gasification of an RDF char was performed to produce syngas and adsorbent simultaneously. The RDF was previously pyrolyzed at 700 °C maximum temperature in a Hungarian pyrolysis pilot plant with approximately 120 kg h-1 capacity. In this thermal waste processing plant, the pyrolysis gas is already utilised by burning, but currently, the char ends up in landfills. The gasification of char samples was examined with different steam-to-carbon ratios (0.56, 0.84, and 1.12) and duration (30, 60, and 120 min) at 900 °C. Following gasification, the phenol removal capability of the solid by-products was investigated. The results show that its composition and energetic properties make the produced syngas more suitable to use as a raw material in the chemical industry rather than a fuel. At lower concentrations, the effectiveness of the solid by-product for phenol removal was comparable to commercial activated carbon. These are promising results about producing activated carbon from waste without any chemical treatment.
Collapse
Affiliation(s)
- Emese Sebe
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, Miskolc, Hungary
| | - Gábor Nagy
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, Miskolc, Hungary
| | - András Arnold Kállay
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, Miskolc, Hungary
| |
Collapse
|
4
|
Kim SW, Kim YT, Tsang YF, Lee J. Sustainable ethylene production: Recovery from plastic waste via thermochemical processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166789. [PMID: 37666332 DOI: 10.1016/j.scitotenv.2023.166789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The concept of monomer recovery from plastic waste has recently gained broad interest in industry as a powerful strategy to reduce the environmental impacts of chemical production and plastic waste pollution. Herein, we focus on the ethylene recovery from plastic waste via thermochemical pathways, such as pyrolysis, gasification, and steam cracking of pyrolysis oil derived from plastic waste. Ethylene recovery performance of different thermochemical conversion processes is evaluated and compared with respect to plastic waste types, process types, ethylene recovery yields, and process operating conditions. Based on the analysis of available data in earlier literature, future research is recommended to further enhance the viability of the thermochemical ethylene recovery technologies. This review is expected to offer a meaningful guideline on developing efficient platforms for the value-added monomer recovery from plastic waste through thermochemical conversion routes. It is also hoped that this review serves as a preliminary step to encourage the widespread adoption of thermochemical conversion-based ethylene recovery from plastic waste by industries.
Collapse
Affiliation(s)
- Seung Won Kim
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Tae Kim
- Chemical and Process Technology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution (SKLMP), The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong.
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
5
|
Seyyedi SR, Kowsari E, Ramakrishna S, Gheibi M, Chinnappan A. Marine plastics, circular economy, and artificial intelligence: A comprehensive review of challenges, solutions, and policies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118591. [PMID: 37423188 DOI: 10.1016/j.jenvman.2023.118591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Global plastic production is rapidly increasing, resulting in significant amounts of plastic entering the marine environment. This makes marine litter one of the most critical environmental concerns. Determining the effects of this waste on marine animals, particularly endangered organisms, and the health of the oceans is now one of the top environmental priorities. This article reviews the sources of plastic production, its entry into the oceans and the food chain, the potential threat to aquatic animals and humans, the challenges of plastic waste in the oceans, the existing laws and regulations in this field, and strategies. Using conceptual models, this study looks at a circular economy framework for energy recovery from ocean plastic wastes. It does this by drawing on debates about AI-based systems for smart management. In the last sections of the present research, a novel soft sensor is designed for the prediction of accumulated ocean plastic waste based on social development features and the application of machine learning computations. Plus, the best scenario of ocean plastic waste management with a concentration on both energy consumption and greenhouse gas emissions is discussed using USEPA-WARM modeling. Finally, a circular economy concept and ocean plastic waste management policies are modeled based on the strategies of different countries. We deal with green chemistry and the replacement of plastics derived from fossil sources.
Collapse
Affiliation(s)
- Seyed Reza Seyyedi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore.
| | - Mohammad Gheibi
- Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amutha Chinnappan
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| |
Collapse
|
6
|
Abbas-Abadi MS, Kusenberg M, Zayoud A, Roosen M, Vermeire F, Madanikashani S, Kuzmanović M, Parvizi B, Kresovic U, De Meester S, Van Geem KM. Thermal pyrolysis of waste versus virgin polyolefin feedstocks: The role of pressure, temperature and waste composition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 165:108-118. [PMID: 37119685 DOI: 10.1016/j.wasman.2023.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023]
Abstract
Due to the complexity and diversity of polyolefinic plastic waste streams and the inherent non-selective nature of the pyrolysis chemistry, the chemical decomposition of plastic waste is still not fully understood. Accurate data of feedstock and products that also consider impurities is, in this context, quite scarce. Therefore this work focuses on the thermochemical recycling via pyrolysis of different virgin and contaminated waste-derived polyolefin feedstocks (i.e., low-density polyethylene (LDPE), polypropylene (PP) as main components), along with an investigation of the decomposition mechanisms based on the detailed composition of the pyrolysis oils. Crucial in this work is the detailed chemical analysis of the resulting pyrolysis oils by comprehensive two-dimensional gas chromatography (GC × GC) and ICP-OES, among others. Different feedstocks were pyrolyzed at a temperature range of 430-490 °C and at pressures between 0.1 and 2 bar in a continuous pilot-scale pyrolysis unit. At the lowest pressure, the pyrolysis oil yield of the studied polyolefins reached up to 95 wt%. The pyrolysis oil consists of primarily α-olefins (37-42 %) and n-paraffins (32-35 %) for LDPE pyrolysis, while isoolefins (mostly C9 and C15) and diolefins accounted for 84-91 % of the PP-based pyrolysis oils. The post-consumer waste feedstocks led to significantly less pyrolysis oil yields and more char formation compared to their virgin equivalents. It was found that plastic aging, polyvinyl chloride (PVC) (3 wt%), and metal contamination were the main causes of char formation during the pyrolysis of polyolefin waste (4.9 wt%).
Collapse
Affiliation(s)
- Mehrdad Seifali Abbas-Abadi
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Marvin Kusenberg
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Azd Zayoud
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Martijn Roosen
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-8500 Kortrijk, Belgium
| | - Florence Vermeire
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Sepehr Madanikashani
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium; Materials and Process Engineering (IMAP), Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain - Place Sainte Barbe 2, B-1348 Louvain-la-Neuve, Belgium
| | - Maja Kuzmanović
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium; College of Polymer Science and Engineering, Sichuan University (Wangjiang campus), No.24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Behzad Parvizi
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | | | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-8500 Kortrijk, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium.
| |
Collapse
|
7
|
Veksha A, Wang Y, Foo JW, Naruse I, Lisak G. Defossilization and decarbonization of hydrogen production using plastic waste: Temperature and feedstock effects during thermolysis stage. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131270. [PMID: 36989781 DOI: 10.1016/j.jhazmat.2023.131270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The replacement of natural gas with plastic-derived pyrolysis gas can defossilize H2 production, while subsequent capture, utilization and storage of carbon in a solid form can decarbonize the process. The objective of this study was to investigate H2 production from three types of plastics using a process comprising pyrolysis (600 °C) and thermolysis stages (1200-1500 °C). Depending on the plastic feedstock and thermolysis temperature, the laboratory-scale setup generated 1000-1350 mL/min product gas with H2 purity of 74.3-94.2 vol%. The recovery of 5-9 wt% molecular H2 per mass of plastics was achieved. Other products included solid residue (0.1-12 wt%) and oil (8-52 wt%) from the pyrolysis reactor, solid carbon (36-53 wt%) and gas impurities (2-16 wt%) from the thermolysis reactor. The purity of H2 gas was detrimentally influenced by polyethylene terephthalate in the feedstock due to the dilution of gas by CO. The decomposition of methane containing in the pyrolysis gas was the limiting reaction step during H2 production and improved at higher thermolysis temperature. Three solid carbon structures were formed during the thermolysis stage regardless of the plastic type: carbon black aggregates, carbon black aggregates coated with a layer of pyrolytic carbon and a carbon film on the inner reactor wall. Among the three types of carbon, the highest valorization potential was identified for carbon black aggregates. Plastic feedstock composition had little if any effect on carbon black properties, while high thermolysis temperature (1500 °C) reduced the particle sizes and increased the surface area of aggregates.
Collapse
Affiliation(s)
- Andrei Veksha
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Yuxin Wang
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; Department of Mechanical Systems Engineering, Nagoya University, Tokai National Higher Education and Research, 464-8603, Japan
| | - Jun Wei Foo
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Ichiro Naruse
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research, 464-8601, Japan
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
8
|
Zanella D, Romagnoli M, Malcangi S, Beccaria M, Chenet T, De Luca C, Testoni F, Pasti L, Visentini U, Morini G, Cavazzini A, Franchina FA. The contribution of high-resolution GC separations in plastic recycling research. Anal Bioanal Chem 2023; 415:2343-2355. [PMID: 36650250 PMCID: PMC10149442 DOI: 10.1007/s00216-023-04519-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
One convenient strategy to reduce environmental impact and pollution involves the reuse and revalorization of waste produced by modern society. Nowadays, global plastic production has reached 367 million tons per year and because of their durable nature, their recycling is fundamental for the achievement of the circular economy objective. In closing the loop of plastics, advanced recycling, i.e., the breakdown of plastics into their building blocks and their transformation into valuable secondary raw materials, is a promising management option for post-consumer plastic waste. The most valuable product from advanced recycling is a fluid hydrocarbon stream (or pyrolysis oil) which represents the feedstock for further refinement and processing into new plastics. In this context, gas chromatography is currently playing an important role since it is being used to study the pyrolysis oils, as well as any organic contaminants, and it can be considered a high-resolution separation technique, able to provide the molecular composition of such complex samples. This information significantly helps to tailor the pyrolysis process to produce high-quality feedstocks. In addition, the detection of contaminants (i.e., heteroatom-containing compounds) is crucial to avoid catalytic deterioration and to implement and design further purification processes. The current review highlights the importance of molecular characterization of waste stream products, and particularly the pyrolysis oils obtained from waste plastics. An overview of relevant applications published recently will be provided, and the potential of comprehensive two-dimensional gas chromatography, which represents the natural evolution of gas chromatography into a higher-resolution technique, will be underlined.
Collapse
Affiliation(s)
- Delphine Zanella
- Giulio Natta Research Center, LyondellBasell Italy, Piazzale Donegani 12, 44122, Ferrara, Italy
| | - Monica Romagnoli
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Sofia Malcangi
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Chiara De Luca
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Fabio Testoni
- Giulio Natta Research Center, LyondellBasell Italy, Piazzale Donegani 12, 44122, Ferrara, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Ugo Visentini
- Giulio Natta Research Center, LyondellBasell Italy, Piazzale Donegani 12, 44122, Ferrara, Italy
| | - Giampiero Morini
- Giulio Natta Research Center, LyondellBasell Italy, Piazzale Donegani 12, 44122, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Flavio A Franchina
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
9
|
Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins? Polymers (Basel) 2023; 15:polym15040859. [PMID: 36850143 PMCID: PMC9961285 DOI: 10.3390/polym15040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Plastics are engineering marvels that have found widespread use in all aspects of modern life. However, poor waste management practices and inefficient recycling technologies, along with their extremely high durability, have caused one of the major environmental problems facing humankind: waste plastic pollution. The upcycling of waste plastics to chemical feedstock to produce virgin plastics has emerged as a viable option to mitigate the adverse effects of plastic pollution and close the gap in the circular economy of plastics. Pyrolysis is considered a chemical recycling technology to upcycle waste plastics. Yet, whether pyrolysis as a stand-alone technology can achieve true circularity or not requires further investigation. In this study, we analyzed and critically evaluated whether oil obtained from the non-catalytic pyrolysis of virgin polypropylene (PP) can be used as a feedstock for naphtha crackers to produce olefins, and subsequently polyolefins, without undermining the circular economy and resource efficiency. Two different pyrolysis oils were obtained from a pyrolysis plant and compared with light and heavy naphtha by a combination of physical and chromatographic methods, in accordance with established standards. The results demonstrate that pyrolysis oil consists of mostly cyclic olefins with a bromine number of 85 to 304, whereas light naphtha consists of mostly paraffinic hydrocarbons with a very low olefinic content and a bromine number around 1. Owing to the compositional differences, pyrolysis oil studied herein is completely different than naphtha in terms of hydrocarbon composition and cannot be used as a feedstock for commercial naphtha crackers to produce olefins. The findings are of particular importance to evaluating different chemical recycling opportunities with respect to true circularity and may serve as a benchmark to determine whether liquids obtained from different polyolefin recycling technologies are compatible with existing industrial steam crackers' feedstock.
Collapse
|