1
|
Iijima H, Watari Y, Doi K, Yasuo K, Okabe K. Forest Fragmentation and Warmer Climate Increase Tick-Borne Disease Infection. ECOHEALTH 2025; 22:124-137. [PMID: 39864039 DOI: 10.1007/s10393-025-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/15/2024] [Indexed: 01/27/2025]
Abstract
Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan. We collected data on SFTS case numbers, annual temperature and precipitation, species richness of large- and middle-sized mammals, forest perimeter length (indicating the amount of forest boundaries), percentage of agricultural land, human population, and sightseeing place numbers for each 25 km2 grid cell encompassing Miyazaki Prefecture. Through the construction of a model incorporating these factors, we found that longer forest perimeter and higher temperature led to a higher number of SFTS cases. Precipitation, mammal species richness, percentage of agricultural land, human population, and sightseeing point numbers had no effect on SFTS case numbers. In conclusion, climate condition and forest fragmentation, which increase the opportunity for human infection, played a pivotal role in SFTS outbreak.
Collapse
Affiliation(s)
- Hayato Iijima
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Kandai Doi
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Kazuhiro Yasuo
- Sapporo Higashi Tokushukai Hospital, 3-1, Higashi 14, Kita 33, Higashi-ku, Sapporo, 065-0033, Japan
| | - Kimiko Okabe
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
2
|
Vada R, Zanet S, Battisti E, Ferroglio E. Abundance Trends of Immature Stages of Ticks at Different Distances from Hiking Trails from a Natural Park in North-Western Italy. Vet Sci 2024; 11:508. [PMID: 39453100 PMCID: PMC11512362 DOI: 10.3390/vetsci11100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Hiking trails may act as hotspots at the wildlife-human interface, posing an acarological risk for people and their pets. Ticks that are maintained in the environment by wild animals may quest on people walking along the trails. Assessing the risk of tick bites for people involved in outdoor activities is a further step in mitigating the risk of tick-borne diseases. This work describes the variation of tick abundance along a gradient of distances from hiking trails, where wildlife passage is favored by higher accessibility. Hiking trails with dense vegetation on the sides were sampled for ticks along a 100 m dragging transect, located in a natural park in North-Western Italy. Additional transects were replicated at 1, 2 and 4 m away from the trail on both sides. After morphological identification, descriptive statistics and modeling were applied to determine the abundance patterns across distances. Larvae were most abundant near the trail, peaking at 1 m and dropping sharply at further distances. Nymphs showed a more gradual and consistent decrease at progressing distance from the trail. Few adults were collected, preventing the identification of a clear trend. With higher tick abundance, the immediate vicinity of hiking trails may represent a source of acarological risk for humans and pets.
Collapse
Affiliation(s)
- Rachele Vada
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | | | | | | |
Collapse
|
3
|
Ferroglio E, Vada R, Occhibove F, Fracchia M, Cicco FD, Palencia P, Varzandi AR, Zanet S. An Integrated Approach to an Emerging Problem: Implementing a Whole Year of Camera Trap Survey in Evaluating the Impact of Wildlife on Tick Abundance. Transbound Emerg Dis 2024; 2024:4064855. [PMID: 40303174 PMCID: PMC12016756 DOI: 10.1155/2024/4064855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/13/2024] [Indexed: 05/02/2025]
Abstract
Tick-borne zoonoses are an emerging health issue. The expansion of ticks is mainly driven by climatic changes but also by new approaches to the management of the natural environment, increasing the abundance of vertebrate host species and thus the potential exposure to tick bites for both humans and companion animals. In this context, a holistic approach to studying ticks' ecology is required. In the present work, we shed light on the link between environmental tick abundance (global and specific of Ixodes ricinus nymphs, as the highest zoonotic threat) and the temporal occupancy of wildlife host species retrieved from camera traps (namely, wild ruminants, mesocarnivores and wild boar). We modelled this relationship by integrating abiotic factors relevant to tick survival, such as the vegetation cover and saturation deficit, and estimated the accuracy of prediction. To collect these data, we deployed camera traps in a peri-urban Natural Park in Northwest Italy to monitor wildlife for 1 whole year while collecting ticks in front of camera traps by dragging transects every 2 weeks. Overall, wildlife temporal occupancy showed an additive impact on tick abundance for species that are preferential hosts (deer and mesocarnivores) and a detractive impact for wild boar, which also presented a lower tick burden, particularly with regard to the tick species collected in the environment (mainly I. ricinus and Haemaphysalis punctata). Accuracy of prediction was higher for I. ricinus nymphs rather than the global model. Temporal fluctuations in the tick population were also highlighted. Wildlife temporal occupancy was not constant and varied between seasons according to feeding habits. In conclusion, we highlighted the utility of camera trap data to investigate tick ecology and acarological risk. This information is crucial in informing monitoring and prevention strategies to decrease the risk of tick bites in humans and thus zoonotic risk of tick-borne diseases.
Collapse
Affiliation(s)
- Ezio Ferroglio
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Rachele Vada
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Flavia Occhibove
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Mattia Fracchia
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Federica De Cicco
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Pablo Palencia
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Amir Reza Varzandi
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Stefania Zanet
- Department of Veterinary SciencesUniversity of Turin, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| |
Collapse
|
4
|
Adams DR, Figurskey AC, Barbarin AM, Reiskind MH. Don't go chasing waterfalls: the phenology of Amblyomma americanum and increased collection of medically relevant ticks further away from hiking trails in the Piedmont of North Carolina, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:911-918. [PMID: 38742817 DOI: 10.1093/jme/tjae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Hiking is a popular recreational activity in North Carolina that may expose people to ticks and tick-borne pathogens. However, there is a lack of knowledge on how ticks are distributed on and near trails. Our study tested the hypothesis that ticks are more likely to be encountered when moving further away from trails by measuring differences in relative abundance at various distances. We tested 4 distances (middle of trail, edge of trail, 5 m, 20 m), as well as an on-trail and off-trail grouping. We collected significantly more ticks and ticks were more likely to be collected at our 20 m and 5 m sampling distances rather than directly on or adjacent to trails, and significantly more were collected during off-trail collections than on-trails. When looking only at Amblyomma americanum, post hoc comparisons revealed that significantly more juvenile stages were collected at 5 m and 20 m distances, but not for adults. Our monthly sampling also allowed us to describe the phenology of A. americanum in North Carolina, which is consistent with the phenology of this species in the southeastern United States with adults peaking May-Jun, nymphs Jun-Jul, and larvae in Jul-Aug. These results generally demonstrate the importance of utilizing established trails when hiking to decrease tick-borne disease risk and should be communicated to the public as a recommendation for reducing tick-encounter risk.
Collapse
Affiliation(s)
- Dayvion R Adams
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Anastasia C Figurskey
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Alexis M Barbarin
- Communicable Disease Branch, Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, NC, USA
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Van Gestel M, Heylen D, Verheyen K, Fonville M, Sprong H, Matthysen E. Recreational hazard: Vegetation and host habitat use correlate with changes in tick-borne disease hazard at infrastructure within forest stands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170749. [PMID: 38340833 DOI: 10.1016/j.scitotenv.2024.170749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Studies on density and pathogen prevalence of Ixodes ricinus indicate that vegetation and local host community drive much of their variation between green spaces. Contrarily, micro-geographic variation is understudied, although its understanding could reduce disease risk. We studied the density of infectious nymphal Ixodes sp. ("DIN", proxy for disease hazard), density of questing nymphs ("DON") and nymphal infection prevalence ("NIP") near recreational forest infrastructure. Drag sampling within forest stands and at adjacent benches and trails was combined with vegetation surveys, camera trapping hosts and pathogen screening of ticks. We analysed Borrelia burgdorferi s.l. and its genospecies, with complementary analyses on Rickettsia sp., Anaplasma phagocytophilum, Neoehrlichia mikurensis and Borrelia miyamotoi. DIN was highest in forest interior and at trails enclosed by forest. Lower disease hazard was observed at benches and trails at forest edges. This infrastructure effect can be attributed to variation in vegetation characteristics and the habitat use of tick hosts, specifically roe deer, rodents and songbirds. DON is the main driver of DIN at micro-geographic scale and negatively affected by infrastructure and forest edges. A positive association with vegetation cover in understorey and canopy was observed, as were positive trends for local rodent and songbird abundance. NIP of different pathogens was affected by different drivers. Lower B. burgdorferi s.l. prevalence in the interior of forest stands, driven by its most prevalent genospecies B. afzelii, points towards higher density of uninfected hosts there. B. afzelii was positively associated with understorey containing tall species and with high canopy cover, whereas local bird community composition predicts B. garinii prevalence. A positive effect of songbird abundance and a negative effect of pigeons were observed. Our findings support amplification and inhibition mechanisms within forest stands and highlight that the effect of established drivers of DIN may differ based on the considered spatial scale.
Collapse
Affiliation(s)
- Mats Van Gestel
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium; Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium.
| | - Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium; Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Gontrode, Belgium
| | - Manoj Fonville
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hein Sprong
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|