1
|
Du J, Zhan L, Zhang G, Zhou Q, Wu W. Antibiotic sorption onto MPs in terrestrial environment: a critical review of the transport, bioaccumulation, ecotoxicological effects and prospects. Drug Chem Toxicol 2025; 48:266-280. [PMID: 39686663 DOI: 10.1080/01480545.2024.2433075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) and antibiotics are prevalent contaminants in terrestrial environment. MPs possess the ability to absorb antibiotics, resulting in the formation of complex pollutants. While the accumulation and fate of MPs and antibiotics in marine ecosystems have been extensively studied, their combined pollution behavior in terrestrial environments remains relatively underexplored. This paper describes the sources, migration, and compound pollution of MPs and antibiotics in soil. It reviews the mechanisms of compound toxicity associated with antibiotics and MPs, combining different biological classifications. Moreover, we highlight the factors that influence the effects of MPs as vectors and the critical elements driving the spread of antibiotic resistance genes (ARGs). These information suggests the potential mitigation measures for MPs contamination from different perspectives to reduce the impact of ARGs-carrying MPs on human health, specifically through transmission via plants, microbes, or terrestrial vertebrates. Finally, we identify gaps in scientific knowledge regarding the interaction between MPs and antibiotics in soil environments, including the need for standardized research methods, multi-dimensional studies on complex ecological effects, and more comprehensive risk assessments of other pollutants on human health. In summary, this paper provides foundational information for assessing their combined toxicity, offers insights into the distribution of these emerging pollutants in soil, and contributes to a better understanding of the environmental impact of these contaminants.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Lichuan Zhan
- Shengzhou Agricultural Technology Extension Center, Shengzhou, China
| | - Gengmiao Zhang
- Agricultural Technology Extension Center of Zhuji City, Zhuji, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
2
|
Huang H, Huang K, Chen Y, Huang S, Wang J, Wu H, Zheng Z. Individual and combined effects of sodium dichloroisocyanurate and isothiazolinone on the cyanobacteria-Vallisneria natans-microbe aquatic ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136229. [PMID: 39490170 DOI: 10.1016/j.jhazmat.2024.136229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The use of algaecides to control high-density cyanobacterial blooms is often complicated by secondary pollution and the toxicity to non-target organisms. This study investigates the individual and combined effects of sodium dichloroisocyanurate (NaDCC, 5, 50, and 100 mg/L) and isothiazolinone (0.1, 0.5, and 1.5 mg/L) on a cyanobacteria-Vallisneria natans-microbe aquatic ecosystem, focusing on their interactions and ecological impacts. Results indicate that NaDCC could achieve a higher algae removal rate than isothiazolinone within 15 days, but has a greater negative effect on Vallisneria natans. Both algaecides disrupt nutrient and secondary metabolite balances at low and high concentrations, increasing nutrient loads and harmful substances. Optimal results were obtained with low concentrations of NaDCC (5 mg/L) and isothiazolinone (0.1 mg/L), effectively controlling cyanobacteria while minimizing harm to Vallisneria natans and reducing nutrient loads and microcystin accumulation. Algaecide application enhanced microbial diversity in water and leaves, shifting the dominant community from cyanobacteria to organisms adapted to the post-cyanobacterial decay environment. Metabolomic analysis indicated increased secretion of lipids and organic acids by cyanobacteria in response to algaecide stress. High concentrations of NaDCC and isothiazolinone disrupted nitrogen metabolism in cyanobacteria and induced ROS overproduction, affecting unsaturated fatty acid synthesis and other metabolic pathways. These findings highlight the importance of exploring different combinations of algaecides to reduce their concentrations, balance algal control with ecological stability, and offer insights for effective eutrophication management.
Collapse
Affiliation(s)
- Haiqing Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Kaili Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Yican Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Suzhen Huang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, 310015, PR China
| | - Jie Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
3
|
Guo J, Jin X, Zhou Y, Gao B, Li Y, Zhou Y. Microplastic and antibiotics in waters: Interactions and environmental risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123125. [PMID: 39488185 DOI: 10.1016/j.jenvman.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Antibiotics (ATs) are ubiquitously detected in natural waters worldwide, and their tendency to co-migrate with microplastics (MPs) post-adsorption leads to heightened environmental risk. Research on the adsorption of ATs on MPs and their subsequent effects on the environmental risks is gaining significant attention globally. This adsorption process predominantly occurs through hydrophobic forces, hydrogen bonds, and electrostatic interactions and is influenced by various environmental factors. The interaction between MPs and ATs exhibited varying degrees of efficiency across different pH levels and ionic strengths. Furthermore, this paper outlines the environmental risks associated with the co-presence of MPs and ATs in aquatic environments, emphasizing the potential effect of MPs on the distribution of antibiotic resistance genes (ARGs) and related environmental risks. The potential hazards posed by MPs and ATs in aquatic systems warrant serious consideration. Future research should concentrate on the adsorption of ATs/ARGs on MPs under real environmental conditions, horizontal gene transfer on MPs, as well as biofilm formation and agglomeration behavior on MPs that needs to be emphasized.
Collapse
Affiliation(s)
- Jiayi Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinbai Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, Shanghai, 200237, China
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
4
|
Du J, Huang W, Pan Y, Xu S, Li H, Jin M, Liu Q. Ecotoxicological Effects of Microplastics Combined With Antibiotics in the Aquatic Environment: Recent Developments and Prospects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1950-1961. [PMID: 38980257 DOI: 10.1002/etc.5950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
Both microplastics and antibiotics are commonly found contaminants in aquatic ecosystems. Microplastics have the ability to absorb antibiotic pollutants in water, but the specific adsorption behavior and mechanism are not fully understood, particularly in relation to the impact of microplastics on toxicity in aquatic environments. We review the interaction, mechanism, and transport of microplastics and antibiotics in water environments, with a focus on the main physical characteristics and environmental factors affecting adsorption behavior in water. We also analyze the effects of microplastic carriers on antibiotic transport and long-distance transport in the water environment. The toxic effects of microplastics combined with antibiotics on aquatic organisms are systematically explained, as well as the effect of the adsorption behavior of microplastics on the spread of antibiotic resistance genes. Finally, the scientific knowledge gap and future research directions related to the interactions between microplastics and antibiotics in the water environment are summarized to provide basic information for preventing and treating environmental risks. Environ Toxicol Chem 2024;43:1950-1961. © 2024 SETAC.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Suzhou Fishseeds Bio-technology, Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
| | - Wenfei Huang
- Eco-Environmental Science and Research, Institute of Zhejiang Province, Hangzhou, China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | | | - Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qinghua Liu
- Suzhou Fishseeds Bio-technology, Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
5
|
Yan X, Chio C, Li H, Zhu Y, Chen X, Qin W. Colonization characteristics and surface effects of microplastic biofilms: Implications for environmental behavior of typical pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173141. [PMID: 38761927 DOI: 10.1016/j.scitotenv.2024.173141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.
Collapse
Affiliation(s)
- Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China; Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Xuantong Chen
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
6
|
Tao H, Zhou L, Yu D, Chen Y, Luo Y, Lin T. Effects of polystyrene microplastics on the metabolic level of Pseudomonas aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171335. [PMID: 38423332 DOI: 10.1016/j.scitotenv.2024.171335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Given the widespread presence of Pseudomonas aeruginosa in water and its threat to human health, the metabolic changes in Pseudomonas aeruginosa when exposed to polystyrene microplastics (PS-MPs) exposure were studied, focusing on molecular level. Through non-targeted metabolomics, a total of 64 differential metabolites were screened out under positive ion mode and 44 under negative ion mode. The content of bacterial metabolites changed significantly, primarily involving lipids, nucleotides, amino acids, and organic acids. Heightened intracellular oxidative damage led to a decrease in lipid molecules and nucleotide-related metabolites. The down-regulation of amino acid metabolites, such as L-Glutamic and L-Proline, highlighted disruptions in cellular energy metabolism and the impaired ability to synthesize proteins as a defense against oxidation. The impact of PS-MPs on organic acid metabolism was evident in the inhibition of pyruvate and citrate, thereby disrupting the cells' normal participation in energy cycles. The integration of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that PS-MPs mainly caused changes in metabolic pathways, including ABC transporters, Aminoacyl-tRNA biosynthesis, Purine metabolism, Glycerophospholipid metabolism and TCA cycle in Pseudomonas aeruginosa. Most of the differential metabolites enriched in these pathways were down-regulated, demonstrating that PS-MPs hindered the expression of metabolic pathways, ultimately impairing the ability of cells to synthesize proteins, DNA, and RNA. This disruption affected cell proliferation and information transduction, thus hampering energy circulation and inhibiting cell growth. Findings of this study supplemented the toxic effects of microplastics and the defense mechanisms of microorganisms, in turn safeguarding drinking water safety and human health.
Collapse
Affiliation(s)
- Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Lingqin Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Duo Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiyang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yunxin Luo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
7
|
Okeke ES, Ezeorba TPC, Chen Y, Mao G, Feng W, Wu X. Ecotoxicological and health implications of microplastic-associated biofilms: a recent review and prospect for turning the hazards into benefits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70611-70634. [PMID: 35994149 DOI: 10.1007/s11356-022-22612-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), over the years, have been regarded as a severe environmental nuisance with adverse effects on our ecosystem as well as human health globally. In recent times, microplastics have been reported to support biofouling by genetically diverse organisms resulting in the formation of biofilms. Biofilms, however, could result in changes in the physicochemical properties of microplastics, such as their buoyancy and roughness. Many scholars perceived the microplastic-biofilm association as having more severe consequences, providing evidence of its effects on the environment, aquatic life, and nutrient cycles. Furthermore, other researchers have shown that microplastic-associated biofilms have severe consequences on human health as they serve as vectors of heavy metals, toxic chemicals, and antibiotic resistance genes. Despite what is already known about their adverse effects, other interesting avenues are yet to be fully explored or developed to turn the perceived negative microplastic-biofilm association to our advantage. The major inclusion criteria for relevant literature were that it must focus on microplastic association biofilms, while we excluded papers solely on biofilms or microplastics. A total of 242 scientific records were obtained. More than 90% focused on explaining the environmental and health impacts of microplastic-biofilm association, whereas only very few studies have reported the possibilities and opportunities in turning the microplastic biofilms association into benefits. In summary, this paper concisely reviews the current knowledge of microplastic-associated biofilms and their adverse consequences and further proposes some approaches that can be developed to turn the negative association into positive.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 41000, Nigeria
- Natural Science Unit, SGS, University of Nigeria, Nsukka, Enugu State, 41000, Nigeria
| | | | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|