1
|
Helbling EW, Banaszak AT, Valiñas MS, Vizzo JI, Villafañe VE, Cabrerizo MJ. Browning, nutrient inputs, and fast vertical mixing from simulated extreme rainfall and wind stress alter estuarine phytoplankton productivity. THE NEW PHYTOLOGIST 2023; 238:1876-1888. [PMID: 36908076 DOI: 10.1111/nph.18874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/25/2023] [Indexed: 05/04/2023]
Abstract
Browning and nutrient inputs from extreme rainfall, together with increased vertical mixing due to strong winds, are more frequent in coastal ecosystems; however, their interactive effects on phytoplankton are poorly understood. We conducted experiments to quantify how browning, together with different mixing speeds (fluctuating radiation), and a nutrient pulse alter primary productivity and photosynthetic efficiency in estuarine phytoplankton communities. Phytoplankton communities (grazers excluded) were exposed simultaneously to these drivers, and key photosynthetic targets were quantified: oxygen production, electron transport rates (ETRs), and carbon fixation immediately following collection and after a 2-d acclimation/adaptation period. Increasing mixing speeds in a turbid water column (e.g. browning) significantly decreased ETRs and carbon fixation in the short term. Acclimation/adaptation to this condition for 2 d resulted in an increase in nanoplanktonic diatoms and a community that was photosynthetically more efficient; however, this did not revert the decreasing trend in carbon fixation with increased mixing speed. The observed interactive effects (resulting from extreme rainfall and strong winds) may have profound implications in the trophodynamics of highly productive system such as the Southwest Atlantic Ocean due to changes in the size structure of the community and reduced productivity.
Collapse
Affiliation(s)
- E Walter Helbling
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anastazia T Banaszak
- Integrative Reef Conservation Research Laboratory, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes S/N, Puerto Morelos, CP 77580, Mexico
| | - Macarena S Valiñas
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan I Vizzo
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia E Villafañe
- Estación de Fotobiología Playa Unión, 9103, Chubut, Rawson, Casilla de Correos 15, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco J Cabrerizo
- Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidad de Vigo, Campus Lagoas Marcosende, s/n, Vigo, 36310, Spain
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Illa de Toralla s/n, Vigo, 36331, Spain
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, Granada, 18071, Spain
| |
Collapse
|
2
|
Calderini ML, Salmi P, Rigaud C, Peltomaa E, Taipale SJ. Metabolic plasticity of mixotrophic algae is key for their persistence in browning environments. Mol Ecol 2022; 31:4726-4738. [PMID: 35844067 PMCID: PMC9544590 DOI: 10.1111/mec.16619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Light availability is the main regulator of primary production, shaping photosynthetic communities and their production of ecologically important biomolecules. In freshwater ecosystems, increasing dissolved organic carbon (DOC) concentrations, commonly known as browning, leads to lower light availability and the proliferation of mixotrophic phytoplankton. Here, a mixotrophic algal species (Cryptomonas sp.) was grown under five increasing DOC concentrations to uncover the plastic responses behind the success of mixotrophs in browning environments and their effect in the availability of nutritionally important biomolecules. In addition to the browning treatments, phototrophic, heterotrophic and mixotrophic growth conditions were used as controls. Despite reduced light availability, browning did not impair algal growth compared to phototrophic conditions. Comparative transcriptomics showed that genes related to photosynthesis were down‐regulated, whereas phagotrophy gene categories (phagosome, lysosome and endocytosis) were up‐regulated along the browning gradient. Stable isotope analysis of phospholipid fractions validated these results, highlighting that the studied mixotroph increases its reliance on heterotrophic processes with browning. Metabolic pathway reconstruction using transcriptomic data suggests that organic carbon is acquired through phagotrophy and used to provide energy in conjunction with photosynthesis. Although metabolic responses to browning were observed, essential fatty acid content was similar between treatments while sterol content was slightly higher upon browning. Together, our results provide a mechanistic model of how a mixotrophic alga responds to browning and how such responses affect the availability of nutritionally essential biomolecules for higher trophic levels.
Collapse
Affiliation(s)
- Marco L Calderini
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Department of Biological and Environmental Science, University of Jyvaskyla, Finland
| | - Pauliina Salmi
- Spectral Imaging Laboratory, Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Cyril Rigaud
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Peltomaa
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|