1
|
Qiqige B, Liu J, Li M, Hu X, Guo W, Wang P, Ding Y, Zhi Q, Wu Y, Guan X, Li J. Different Flooding Conditions Affected Microbial Diversity in Riparian Zone of Huihe Wetland. Microorganisms 2025; 13:154. [PMID: 39858922 PMCID: PMC11767682 DOI: 10.3390/microorganisms13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The soil microbiome plays an important role in wetland ecosystem services and functions. However, the impact of soil hydrological conditions on wetland microorganisms is not well understood. This study investigated the effects of wetted state (WS); wetting-drying state (WDS); and dried state (DS) on the diversity of soil bacteria, fungi, and archaea. The Shannon index of bacterial diversity was not significantly different in various flooding conditions (p > 0.05), however, fungal diversity and archaeal communities were significantly different in different flooding conditions (p < 0.05). Significant differences were found in the beta diversity of bacterial, fungal, and archaeal communities (p < 0.05). Additionally, the composition of bacteria, fungi, and archaea varied. Bacteria were predominantly composed of Proteobacteria and Actinobacteria, fungi mainly consisted of Ascomycota and Mucoromycota, and archaea were primarily represented by Crenarchaeota and Euryarchaeota. Bacteria exhibited correlations with vegetation coverage, fungi with plant diversity, and archaea with aboveground vegetation biomass. The pH influenced bacterial and archaeal communities, while soil bulk density, moisture, soil carbon, soil nitrogen, and plant community diversity impacted fungal communities. This study provides a scientific basis for understanding the effects of different hydrological conditions on microbial communities in the Huihe Nature Reserve; highlighting their relationship with vegetation and soil properties, and offers insights for the ecological protection of the Huihe wetland.
Collapse
Affiliation(s)
- Bademu Qiqige
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Jingjing Liu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.L.); (Q.Z.); (Y.W.)
| | - Ming Li
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Xiaosheng Hu
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Weiwei Guo
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Ping Wang
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Yi Ding
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| | - Qiuying Zhi
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.L.); (Q.Z.); (Y.W.)
- College of Ecology, Lanzhou University, Lanzhou 730020, China
| | - Yuxuan Wu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.L.); (Q.Z.); (Y.W.)
| | - Xiao Guan
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.L.); (Q.Z.); (Y.W.)
| | - Junsheng Li
- China Geological Survey Comprehensive Survey Command Center for Natural Resources, Beijing 100055, China; (B.Q.); (M.L.); (X.H.); (W.G.); (P.W.); (Y.D.)
| |
Collapse
|
2
|
Wang H, Strock J, Ranaivoson A, Ishii S. Bioremediation of nitrate in agricultural drainage ditches: Impacts of low-grade weirs on microbiomes and nitrogen cycle gene abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177070. [PMID: 39454790 DOI: 10.1016/j.scitotenv.2024.177070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Artificial drainage is essential for the success of modern agriculture, but it can also accelerate the movement of nutrients, especially nitrate, from soil to surrounding and downstream water bodies. Removal of nitrate from agricultural drainage by using controlled drainage systems, such as ditches installed with low-grade weirs, has been shown to help reduce nutrient loading into watersheds. However, the effect of low-grade weirs varies greatly, likely due to the differences in climate, system designs (e.g., hydraulic characteristics), and the resulting variation in microbial structures and functions in the ditch. In this study, we analyzed the temporal and spatial dynamics of microbiomes in a paired ditch system with weir-installed and uninstalled (control) channels over two years by using the 16S rRNA gene amplicon sequencing and the high-throughput quantitative PCR targeting various N cycle-associated genes [the Nitrogen Cycle Evaluation (NiCE) chip]. The installation of the low-grade weir had a significant impact on the microbiome structure and the distribution of denitrifiers. Microbiome structures also differed significantly between the ditch inlets and the outlets. Denitrification functional genes were more abundant in the inlets than in the other locations and in the channel installed with a low-grade weir. Additionally, oxygenic denitrifiers that use nitric oxide dismutase (nod) to produce N2 and O2 gases from nitric oxide were detected in the ditch channels, suggesting the occurrence of nitrate removal process that bypasses the production of nitrous oxide (N2O). The ditch microbiomes sampled during high-flow seasons (i.e., spring and fall) exhibited greater similarity to each other than microbiomes sampled during low-flow seasons (i.e., summer). Taken together, this study indicates that the low-grade weirs have the potential to foster a more favorable environment for denitrifiers, resulting in an increase in the abundance of denitrification functional genes. These findings could offer valuable insights into system management and optimization strategies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA
| | - Jeffrey Strock
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; Southwest Research and Outreach Center, University of Minnesota, 23669 130th St., Lamberton, MN 56152, USA
| | - Andry Ranaivoson
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; Southwest Research and Outreach Center, University of Minnesota, 23669 130th St., Lamberton, MN 56152, USA
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108, USA; BioTechnology Institute, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
3
|
Hallberg L, Hallin S, Djodjic F, Bieroza M. Trade-offs between nitrogen and phosphorus removal with floodplain remediation in agricultural streams. WATER RESEARCH 2024; 258:121770. [PMID: 38781622 DOI: 10.1016/j.watres.2024.121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
To improve water quality and reduce instream erosion, floodplain remediation along agricultural streams can provide multiple ecosystem services through biogeochemical and fluvial processes. During floodplain inundation, longer water residence time and periodic anoxic conditions can lead to increased nitrogen (N) removal through denitrification but also mobilization of phosphorus (P), impeding overall water quality improvements. To investigate the capacity for N and P processing in remediated streams, we measured potential denitrification and nitrous oxide production and yields together with potential P desorption and P fractions in floodplain and stream sediments in ten catchments in Sweden. Sediment P desorption was measured as equilibrium P concentration, using P isotherm incubations. Denitrification rates were measured with the acetylene inhibition method. Sediment nutrient process rates were combined with hydrochemical monitoring along remediated streams and their paired upstream control reaches of trapezoidal shape to determine the impact of floodplains on water quality. The correlation between floodplain denitrification rates and P desorption (r = 0.53, p = 0.02) revealed a trade-off between soluble reactive P (SRP) and nitrate removal, driven by stream water connectivity to floodplains. Nitrous oxide production was not affected by differences in P processing, but nitrous oxide yields decreased with higher denitrification and P desorption. The release of SRP from floodplains (0.03 ± 0.41 mg P kg-1 day-1) was significantly lower than from trapezoidal stream banks (0.38 ± 0.37 mg P kg-1 day-1), predicted by long-term SRP concentrations in stream water and floodplain inundation frequency. The overall impact of SRP release from floodplains on stream SRP concentrations in remediated reaches was limited. However, the remediated reaches showing increased stream SRP concentrations were also frequently inundated and had higher labile P content and coarse soil texture in floodplain sediments. To fully realize the potential for water quality improvements with constructed floodplains in agricultural streams, the promotion of denitrification through increased inundation should be balanced against the risk of P release from sediments, particularly in streams with high SRP inputs.
Collapse
Affiliation(s)
- Lukas Hallberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Faruk Djodjic
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magdalena Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Bieroza M, Hallberg L, Livsey J, Prischl LA, Wynants M. Recognizing Agricultural Headwaters as Critical Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4852-4858. [PMID: 38438992 PMCID: PMC10956425 DOI: 10.1021/acs.est.3c10165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Agricultural headwaters are positioned at the interface between terrestrial and aquatic ecosystems and, therefore, at the margins of scientific disciplines. They are deemed devoid of biodiversity and too polluted by ecologists, overlooked by hydrologists, and are perceived as a nuisance by landowners and water authorities. While agricultural streams are widespread and represent a major habitat in terms of stream length, they remain understudied and thereby undervalued. Agricultural headwater streams are significantly modified and polluted but at the same time are the critical linkages among land, air, and water ecosystems. They exhibit the largest variation in streamflow, water quality, and greenhouse gas emission with cascading effects on the entire stream networks, yet they are underrepresented in monitoring, remediation, and restoration. Therefore, we call for more intense efforts to characterize and understand the inherent variability and sensitivity of these ecosystems to global change drivers through scientific and regulatory monitoring and to improve their ecosystem conditions and functions through purposeful and evidence-based remediation.
Collapse
Affiliation(s)
- Magdalena Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Lukas Hallberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - John Livsey
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Laura-Ainhoa Prischl
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| | - Maarten Wynants
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 75007 Uppsala, Sweden
| |
Collapse
|
5
|
Abulaiti A, She D, Pan Y, Shi Z, Hu L, Huang X, Shan J, Xia Y. Drainage ditches are significant sources of indirect N 2O emissions regulated by available carbon to nitrogen substrates in salt-affected farmlands. WATER RESEARCH 2024; 251:121164. [PMID: 38246078 DOI: 10.1016/j.watres.2024.121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Agriculture is a main source of nitrous oxide (N2O) emissions. In agricultural systems, direct N2O emissions from nitrogen (N) addition to soils have been widely investigated, whereas indirect emissions from aquatic ecosystems such as ditches are poorly known, with insufficient data available to refine the IPCC emission factor. In this contribution, in situ N2O emissions from two ditch water‒air interfaces based on a diffusion model were investigated (almost once per month) from June 2021 to December 2022 in an intensive arable catchment with high N inputs and salt-affected conditions in the Qingtongxia Irrigation District, northwestern China. Our results implied that agricultural ditches (mean 148 μg N m-2 h-1) were significant sources for N2O emissions, and were approximately 2.1 times greater than those of the Yellow River directly connected to ditches. Agronomic management strategies increased N2O fluxes in summer, while precipitation events decreased N2O fluxes. Agronomic management strategies, including fertilization (294--540 kg N hm-2) and irrigation on farmland, resulted in enhanced diffuse N loads in drain water, whereas precipitation diluted the dissolved N2O concentration in ditches and accelerated the ditch flow rate, leading to changes in the residence time of N-containing substances in water. The spatial analysis showed that N2O fluxes (202-233 μg N m-2 h-1) in the headstream and upstream regions of ditches due to livestock and aquaculture pollution sources were relatively high compared to those in the midstream and downstream regions (100-114 μg N m-2 h-1). Furthermore, high available carbon (C) relative to N reduced N2O fluxes at low DOC:DIN ratio levels by inhibiting nitrification. Spatiotemporal variations in the N2O emission factor (EF5) across ditches with higher N resulted in lower EF5 and a large coefficient of variation (CV) range. EF5 was 0.0011 for the ditches in this region, while the EF5 (0.0025) currently adopted by the IPCC is relatively high. The EF5 variation was strongly controlled by the DOC:DIN ratio, TN, and NO3--N, while salinity was also a nonnegligible factor regulating the EF5 variation. The regression model incorporating NO3--N and the DOC:DIN ratio could greatly enhance the predictions of EF5 for agricultural ditches. Our study filled a key knowledge gap regarding EF5 from agricultural ditches in salt-affected farmland and offered a field investigation for refining the EF5 currently used by the IPCC.
Collapse
Affiliation(s)
- Alimu Abulaiti
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; College of Soil and Water Conservation, Hohai University, Changzhou 213200, China.
| | - Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Lei Hu
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225002, China
| | - Xuan Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Jun Shan
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
6
|
Severe E, Errigo IM, Proteau M, Sayedi SS, Kolbe T, Marçais J, Thomas Z, Petton C, Rouault F, Vautier C, de Dreuzy JR, Moatar F, Aquilina L, Wood RL, LaBasque T, Lécuyer C, Pinay G, Abbott BW. Deep denitrification: Stream and groundwater biogeochemistry reveal contrasted but connected worlds above and below. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163178. [PMID: 37023812 DOI: 10.1016/j.scitotenv.2023.163178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/27/2023]
Abstract
Excess nutrients from agricultural and urban development have created a cascade of ecological crises around the globe. Nutrient pollution has triggered eutrophication in most freshwater and coastal ecosystems, contributing to a loss in biodiversity, harm to human health, and trillions in economic damage every year. Much of the research conducted on nutrient transport and retention has focused on surface environments, which are both easy to access and biologically active. However, surface characteristics of watersheds, such as land use and network configuration, often do not explain the variation in nutrient retention observed in rivers, lakes, and estuaries. Recent research suggests subsurface processes and characteristics may be more important than previously thought in determining watershed-level nutrient fluxes and removal. In a small watershed in western France, we used a multi-tracer approach to compare surface and subsurface nitrate dynamics at commensurate spatiotemporal scales. We combined 3-D hydrological modeling with a rich biogeochemical dataset from 20 wells and 15 stream locations. Water chemistry in the surface and subsurface showed high temporal variability, but groundwater was substantially more spatially variable, attributable to long transport times (10-60 years) and patchy distribution of the iron and sulfur electron donors fueling autotrophic denitrification. Isotopes of nitrate and sulfate revealed fundamentally different processes dominating the surface (heterotrophic denitrification and sulfate reduction) and subsurface (autotrophic denitrification and sulfate production). Agricultural land use was associated with elevated nitrate in surface water, but subsurface nitrate concentration was decoupled from land use. Dissolved silica and sulfate are affordable tracers of residence time and nitrogen removal that are relatively stable in surface and subsurface environments. Together, these findings reveal distinct but adjacent and connected biogeochemical worlds in the surface and subsurface. Characterizing how these worlds are linked and decoupled is critical to meeting water quality targets and addressing water issues in the Anthropocene.
Collapse
Affiliation(s)
- Emilee Severe
- Lancaster Environmental Centre, Lancaster University, Lancaster, UK; Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Isabella M Errigo
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA; Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencas Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | - Mary Proteau
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Sayedeh Sara Sayedi
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Tamara Kolbe
- Section of Hydrogeology and Hydrochemistry, Institute of Geology, Faculty of Geoscience, Geoengineering and Mining, TU Bergakademie Freiberg, Freiberg, Germany
| | - Jean Marçais
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), RiverLy, Centre de Lyon-Villeurbanne, 69625 Villeurbanne, France
| | - Zahra Thomas
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Sol Agro et Hydrosystème Spatialisation, UMR 1069, Agrocampus Ouest, 35042 Rennes, France
| | - Christophe Petton
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - François Rouault
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAe), Sol Agro et Hydrosystème Spatialisation, UMR 1069, Agrocampus Ouest, 35042 Rennes, France
| | - Camille Vautier
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Jean-Raynald de Dreuzy
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France; Univ Rennes, CNRS, OSUR (Observatoire des sciences de l'univers de Rennes), UMS 3343, 35000 Rennes, France
| | - Florentina Moatar
- RiverLy, INRAE, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, Lyon, France
| | - Luc Aquilina
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Rachel L Wood
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Thierry LaBasque
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | | | - Gilles Pinay
- Environnement, Ville & Société (EVS UMR5600), Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Benjamin W Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
7
|
Bieroza M, Acharya S, Benisch J, ter Borg RN, Hallberg L, Negri C, Pruitt A, Pucher M, Saavedra F, Staniszewska K, van’t Veen SGM, Vincent A, Winter C, Basu NB, Jarvie HP, Kirchner JW. Advances in Catchment Science, Hydrochemistry, and Aquatic Ecology Enabled by High-Frequency Water Quality Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4701-4719. [PMID: 36912874 PMCID: PMC10061935 DOI: 10.1021/acs.est.2c07798] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
High-frequency water quality measurements in streams and rivers have expanded in scope and sophistication during the last two decades. Existing technology allows in situ automated measurements of water quality constituents, including both solutes and particulates, at unprecedented frequencies from seconds to subdaily sampling intervals. This detailed chemical information can be combined with measurements of hydrological and biogeochemical processes, bringing new insights into the sources, transport pathways, and transformation processes of solutes and particulates in complex catchments and along the aquatic continuum. Here, we summarize established and emerging high-frequency water quality technologies, outline key high-frequency hydrochemical data sets, and review scientific advances in key focus areas enabled by the rapid development of high-frequency water quality measurements in streams and rivers. Finally, we discuss future directions and challenges for using high-frequency water quality measurements to bridge scientific and management gaps by promoting a holistic understanding of freshwater systems and catchment status, health, and function.
Collapse
Affiliation(s)
- Magdalena Bieroza
- Department
of Soil and Environment, SLU, Box 7014, Uppsala 750
07 Sweden
| | - Suman Acharya
- Department
of Environment and Genetics, School of Agriculture, Biomedicine and
Environment, La Trobe University, Albury/Wodonga Campus, Victoria 3690, Australia
| | - Jakob Benisch
- Institute
for Urban Water Management, TU Dresden, Bergstrasse 66, Dresden 01068, Germany
| | | | - Lukas Hallberg
- Department
of Soil and Environment, SLU, Box 7014, Uppsala 750
07 Sweden
| | - Camilla Negri
- Environment
Research Centre, Teagasc, Johnstown Castle, Wexford Y35 Y521, Ireland
- The
James
Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
- School
of
Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6AB, United Kingdom
| | - Abagael Pruitt
- Department
of Biological Sciences, University of Notre
Dame, Notre
Dame, Indiana 46556, United States
| | - Matthias Pucher
- Institute
of Hydrobiology and Aquatic Ecosystem Management, Vienna University of Natural Resources and Life Sciences, Gregor Mendel Straße 33, Vienna 1180, Austria
| | - Felipe Saavedra
- Department
for Catchment Hydrology, Helmholtz Centre
for Environmental Research - UFZ, Theodor-Lieser-Straße 4, Halle (Saale) 06120, Germany
| | - Kasia Staniszewska
- Department
of Earth and Atmospheric Sciences, University
of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Sofie G. M. van’t Veen
- Department
of Ecoscience, Aarhus University, Aarhus 8000, Denmark
- Envidan
A/S, Silkeborg 8600, Denmark
| | - Anna Vincent
- Department
of Biological Sciences, University of Notre
Dame, Notre
Dame, Indiana 46556, United States
| | - Carolin Winter
- Environmental
Hydrological Systems, University of Freiburg, Friedrichstraße 39, Freiburg 79098, Germany
- Department
of Hydrogeology, Helmholtz Centre for Environmental
Research - UFZ, Permoserstr.
15, Leipzig 04318, Germany
| | - Nandita B. Basu
- Department
of Civil and Environmental Engineering and Department of Earth and
Environmental Sciences, and Water Institute, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Helen P. Jarvie
- Water Institute
and Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - James W. Kirchner
- Department
of Environmental System Sciences, ETH Zurich, Zurich CH-8092, Switzerland
- Swiss
Federal Research Institute WSL, Birmensdorf CH-8903, Switzerland
| |
Collapse
|