1
|
Ashcroft T, McSwiggan E, Agyei-Manu E, Nundy M, Atkins N, Kirkwood JR, Ben Salem Machiri M, Vardhan V, Lee B, Kubat E, Ravishankar S, Krishan P, De Silva U, Iyahen EO, Rostron J, Zawiejska A, Ogarrio K, Harikar M, Chishty S, Mureyi D, Evans B, Duval D, Carville S, Brini S, Hill J, Qureshi M, Simmons Z, Lyell I, Kavoi T, Dozier M, Curry G, Ordóñez-Mena JM, de Lusignan S, Sheikh A, Theodoratou E, McQuillan R. Effectiveness of non-pharmaceutical interventions as implemented in the UK during the COVID-19 pandemic: a rapid review. J Public Health (Oxf) 2025; 47:268-302. [PMID: 40037637 PMCID: PMC12123321 DOI: 10.1093/pubmed/fdaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Although non-pharmaceutical inventions (NPIs) were used globally to control the spread of COVID-19, their effectiveness remains uncertain. We aimed to assess the evidence on NPIs as implemented in the UK, to allow public health bodies to prepare for future pandemics. METHODS We used rapid systematic methods (search date: January 2024) to identify, critically appraise and synthesize interventional, observational and modelling studies reporting on NPI effectiveness in the UK. RESULTS Eighty-five modelling, nine observational and three interventional studies were included. Modelling studies had multiple quality issues; six of the 12 non-modelling studies were high quality. The best available evidence was for test and release strategies for case contacts (moderate certainty), which was suggestive of a protective effect. Although evidence for school-related NPIs and universal lockdown was also suggestive of a protective effect, this evidence was considered low certainty. Evidence certainty for the remaining NPIs was very low or inconclusive. CONCLUSION The validity and reliability of evidence on the effectiveness of NPIs as implemented in the UK during the COVID-19 pandemic is weak. To improve evidence generation and support decision-making during future pandemics or other public health emergencies, it is essential to build evaluation into the design of public health interventions.
Collapse
Affiliation(s)
- T Ashcroft
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E McSwiggan
- Usher Institute, Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E Agyei-Manu
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - M Nundy
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - N Atkins
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J R Kirkwood
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
- Usher Institute, Centre for Medical Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - M Ben Salem Machiri
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - V Vardhan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - B Lee
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E Kubat
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - S Ravishankar
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - P Krishan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - U De Silva
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - E O Iyahen
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J Rostron
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - A Zawiejska
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - K Ogarrio
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
- School of Public Health and Tropical Medicine—Department of Social, Behavioral, and Population Sciences, Tulane University, New Orleans, LA 70112, USA
| | - M Harikar
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - S Chishty
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - D Mureyi
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - B Evans
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - D Duval
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - S Carville
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - S Brini
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - J Hill
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - M Qureshi
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - Z Simmons
- Science Evidence Review Team, Research, Evidence and Knowledge Division, UKHSA, London E14 4PU, UK
| | - I Lyell
- Health Protection Operation, UKHSA, London E14 4PU, UK
| | - T Kavoi
- Clinical and Public Health Response Evidence Review Team, Clinical and Public Health, UKHSA, London E14 4PU, UK
| | - M Dozier
- Information Services, University of Edinburgh, Edinburgh EH3 9DR, UK
| | - G Curry
- Usher Institute, Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - J M Ordóñez-Mena
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - S de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
- Royal College of General Practitioners (RCGP), Research and Surveillance Centre, London NW1 2FB, UK
| | - A Sheikh
- Usher Institute, Centre for Medical Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - E Theodoratou
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - R McQuillan
- Usher Institute, Centre for Global Health, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
2
|
Ernst C, Heinrich M, Schwarze R. Factors influencing the results of air samplers in closed, air-conditioned patient rooms-a numerical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7680-7691. [PMID: 40042704 PMCID: PMC11950088 DOI: 10.1007/s11356-025-36036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/26/2025] [Indexed: 03/28/2025]
Abstract
Several air sampling studies have been conducted to assess the risk of airborne transmission since the outbreak of SARS-CoV-2 in late 2019. However, differences in sampler positioning and positive collection results in more distant locations suggest an interaction between the sampler and the indoor air flow, altering the aerosol distribution. This study aims to investigate this influence by studying multiple collector positions, patient exhalation modes, and two ventilation setups in a 3D simulation model using implicit large-eddy simulations along with evaporative Lagrangian particles. The results of this study show a higher total aerosol particle amount in the patient room with the deployment of a sampling device, possibly increasing infection risk for medical personal during and shortly after a sampling procedure. Furthermore, the variation of the collector position reveals an impact on the sampling yield, thus rendering even more distant positions viable and potentially beneficial in terms of maintaining sampler performance and increasing patient comfort. Moreover, the influence of ventilation was investigated suggesting the deactivation to increase aerosol concentration during sampling campaigns for efficient sampling. Additionally, results indicate an impact on room flow by air samplers and subsequent sampling yield, potentially necessitating reassessments of conclusions drawn from previous sampler studies. Finally, it can be concluded that future air sampling campaigns, which are preliminarily assessed using numerical simulation, could benefit from advantageous positioning to aid sampling success.
Collapse
Affiliation(s)
- Christian Ernst
- Institute for Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Lampadiusstraße 4, Freiberg, 09599, Saxony, Germany
| | - Martin Heinrich
- Institute for Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Lampadiusstraße 4, Freiberg, 09599, Saxony, Germany
| | - Rüdiger Schwarze
- Institute for Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Lampadiusstraße 4, Freiberg, 09599, Saxony, Germany.
| |
Collapse
|
3
|
Shi DS, Rinsky JL, McDonald E, Shah MM, Groenewold MR, de Perio MA, Feldstein LR, Saydah S, Haynes JM, Spencer BR, Stramer SL, McCullough M, Jones JM, Chiu SK. Distribution of COVID-19 mitigation measures by industry and work arrangement-US blood donors, May 2021-December 2021. Am J Ind Med 2024; 67:764-771. [PMID: 38856006 PMCID: PMC11265519 DOI: 10.1002/ajim.23626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE To describe coronavirus disease 2019 (COVID-19) mitigation measures in workplaces of employed US blood donors by industry and work arrangement. METHODS During May-December 2021, blood donors responded to a survey; we describe the distribution of reported workplace mitigation measures by industry and work arrangement, organized using the hierarchy of controls. RESULTS Of 53,433 respondents representing 21 industries, ventilation upgrades were reported by 4%-38% of respondents (overall: 20%); telework access ranged from 14%-80% (53% overall). Requiring masks (overall: 84%; range: 40%-94%), physical distancing (77%; 51%-86%), paid leave for illness (70%; 38%-87%), and encouraging vaccination (61%; 33%-80%) were common. Independent workers reported fewer mitigation measures than those in traditional employment settings. CONCLUSIONS Mitigation measures varied by industry and work arrangement. Some mitigation measures may be challenging to implement or irrelevant in certain industries, supporting the idea that mitigation is not a one-size-fits-all strategy. POLICY IMPLICATIONS Tailored strategies to mitigate workplace risks of disease transmission are vital. Strategies should rely on effective methods for identifying workplace controls (e.g., through the hierarchy of controls) and account for industry-specific characteristics and workplace environments.
Collapse
Affiliation(s)
- Dallas S. Shi
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH
| | - Jessica L. Rinsky
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH
| | - Emily McDonald
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH
| | - Melisa M. Shah
- Coronaviruses and Other Respiratory Viruses Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA
| | - Matthew R. Groenewold
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH
| | - Marie A. de Perio
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH
| | - Leora R. Feldstein
- Coronaviruses and Other Respiratory Viruses Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA
| | - Sharon Saydah
- Coronaviruses and Other Respiratory Viruses Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA
| | - James M. Haynes
- American Red Cross, Scientific Affairs, Dedham, MA and Rockville, MD
| | - Bryan R. Spencer
- American Red Cross, Scientific Affairs, Dedham, MA and Rockville, MD
| | - Susan L. Stramer
- American Red Cross, Scientific Affairs, Dedham, MA and Rockville, MD
| | - Matthew McCullough
- Coronaviruses and Other Respiratory Viruses Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA
| | - Jefferson M. Jones
- Coronaviruses and Other Respiratory Viruses Division, National Center for Immunizations and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA
| | - Sophia K. Chiu
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH
| |
Collapse
|
4
|
Duval D, Evans B, Sanders A, Hill J, Simbo A, Kavoi T, Lyell I, Simmons Z, Qureshi M, Pearce-Smith N, Arevalo CR, Beck CR, Bindra R, Oliver I. Non-pharmaceutical interventions to reduce COVID-19 transmission in the UK: a rapid mapping review and interactive evidence gap map. J Public Health (Oxf) 2024; 46:e279-e293. [PMID: 38426578 PMCID: PMC11141784 DOI: 10.1093/pubmed/fdae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Non-pharmaceutical interventions (NPIs) were crucial in the response to the COVID-19 pandemic, although uncertainties about their effectiveness remain. This work aimed to better understand the evidence generated during the pandemic on the effectiveness of NPIs implemented in the UK. METHODS We conducted a rapid mapping review (search date: 1 March 2023) to identify primary studies reporting on the effectiveness of NPIs to reduce COVID-19 transmission. Included studies were displayed in an interactive evidence gap map. RESULTS After removal of duplicates, 11 752 records were screened. Of these, 151 were included, including 100 modelling studies but only 2 randomized controlled trials and 10 longitudinal observational studies.Most studies reported on NPIs to identify and isolate those who are or may become infectious, and on NPIs to reduce the number of contacts. There was an evidence gap for hand and respiratory hygiene, ventilation and cleaning. CONCLUSIONS Our findings show that despite the large number of studies published, there is still a lack of robust evaluations of the NPIs implemented in the UK. There is a need to build evaluation into the design and implementation of public health interventions and policies from the start of any future pandemic or other public health emergency.
Collapse
Affiliation(s)
- D Duval
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - B Evans
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - A Sanders
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - J Hill
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - A Simbo
- Evaluation and Epidemiological Science Division, UKHSA, Colindale NW9 5EQ, UK
| | - T Kavoi
- Cheshire and Merseyside Health Protection Team, UKHSA, Liverpool L3 1DS, UK
| | - I Lyell
- Greater Manchester Health Protection Team, UKHSA, Manchester M1 3BN, UK
| | - Z Simmons
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - M Qureshi
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - N Pearce-Smith
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - C R Arevalo
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - C R Beck
- Evaluation and Epidemiological Science Division, UKHSA, Salisbury SP4 0JG, UK
| | - R Bindra
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - I Oliver
- Director General Science and Research and Chief Scientific Officer, UKHSA, London E14 5EA, UK
| |
Collapse
|
5
|
Alqarni Z, Rezgui Y, Petri I, Ghoroghi A. Viral infection transmission and indoor air quality: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171308. [PMID: 38432379 DOI: 10.1016/j.scitotenv.2024.171308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Respiratory disease transmission in indoor environments presents persistent challenges for health authorities, as exemplified by the recent COVID-19 pandemic. This underscores the urgent necessity to investigate the dynamics of viral infection transmission within indoor environments. This systematic review delves into the methodologies of respiratory infection transmission in indoor settings and explores how the quality of indoor air (IAQ) can be controlled to alleviate this risk while considering the imperative of sustainability. Among the 2722 articles reviewed, 178 were retained based on their focus on respiratory viral infection transmission and IAQ. Fifty eight articles delved into SARS-CoV-2 transmission, 21 papers evaluated IAQ in contexts of other pandemics, 53 papers assessed IAQ during the SARS-CoV-2 pandemic, and 46 papers examined control strategies to mitigate infectious transmission. Furthermore, of the 46 papers investigating control strategies, only nine considered energy consumption. These findings highlight clear gaps in current research, such as analyzing indoor air and surface samples for specific indoor environments, oversight of indoor and outdoor parameters (e.g., temperature, relative humidity (RH), and building orientation), neglect of occupancy schedules, and the absence of considerations for energy consumption while enhancing IAQ. This study distinctly identifies the indoor environmental conditions conducive to the thriving of each respiratory virus, offering IAQ trade-offs to mitigate the risk of dominant viruses at any given time. This study argues that future research should involve digital twins in conjunction with machine learning (ML) techniques. This approach aims to enhance IAQ by analyzing the transmission patterns of various respiratory viruses while considering energy consumption.
Collapse
Affiliation(s)
- Zahi Alqarni
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK; School of Computer Science, King Khalid University, Abha 62529, Saudi Arabia.
| | - Yacine Rezgui
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Ioan Petri
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Ali Ghoroghi
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| |
Collapse
|
6
|
Bahramian A, Mohammadi M, Ahmadi G. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159444. [PMID: 36252673 PMCID: PMC9569930 DOI: 10.1016/j.scitotenv.2022.159444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 05/03/2023]
Abstract
The spread of the COVID-19 pandemic through the airborne transmission of coronavirus-containing droplets emitted during coughing, sneezing, and speaking has now been well recognized. This study presented the effect of indoor temperature (T∞) on the airflow dynamics, velocity fields, size distribution, and airborne transmission of sneeze droplets in a confined space through experimental investigation and computational fluid dynamic (CFD) modeling. The CFD simulations were performed using the renormalization group k-ε turbulence model. The experimental shadowgraph imaging and CFD simulations showed the time evolution of sneeze droplet concentrations into the turbulent expanded puff, droplet cloud, and fully-dispersed droplets. Also, the predicted mean velocity of droplets was compared with the obtained experimental data to assess the accuracy of the results. In addition, the validated computational model was used to study the sneeze complex airflow behavior and airborne transmission of small, medium, and large respiratory droplets in confined spaces at different temperatures. The warm room showed more than ∼14 % increase in airborne aerosols than the room with a mild temperature. The study provides information on the effect of room temperature on the evaporation of respiratory droplets during sneezing. The findings of this fundamental study may be used in developing exposure guidelines by controlling the temperature level in indoor environments to reduce the exposure risk of COVID-19.
Collapse
Affiliation(s)
- Alireza Bahramian
- Department of Chemical Engineering, Hamedan University of Technology, P.O. Box 65155, Hamedan, Iran.
| | - Maryam Mohammadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Goodarz Ahmadi
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|