1
|
Su X, Gao P, Ren Y, Li J, Ren N. Mechanism study on the removal of Cd 2+ and acetamiprid from wastewater treatment plant effluent by PMS activated by tobacco stem biochar under humic acid induction. Phys Chem Chem Phys 2025; 27:7296-7308. [PMID: 40116845 DOI: 10.1039/d5cp00479a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
In this study, tobacco stem based porous biochar was prepared using a direct induced etching process (HA5@TSB). The microstructure with the target functional group was confirmed through detailed SEM, FTIR, XPS, and EPR analysis. Combined with PMS for Cd(II) adsorption and acetamiprid (Ace) degradation, experiments showed that under optimal conditions, the removal rate of Cd(II) within 30 minutes was 95.48%, and the removal rate of Ace within 10 minutes was 97.21%. Through 6 consecutive removal experiments, the removal rates of Cd(II) and Ace by HA5@TSB still reached 94.56% and 97.14%, respectively, confirming its stable catalytic activity and promising prospects for effective reuse. Using different free radical scavengers, the roles and contributions of different reactive oxygen species (ROS) were elucidated (SO4-˙ (51.43%) > ˙OH (29.50%) > ˙1O2 (7.71%) > ˙O2- (3.01%)). In addition, degradation intermediates were identified by liquid chromatography/tandem mass spectrometry (LC-MS), and four degradation pathways were proposed. This superior efficiency provides great potential for the development and utilization of advanced oxidation systems for organic matter degradation and simultaneous adsorption of heavy metals using agricultural and forestry waste-based catalysts, providing alternative solutions for environmental pollution and energy crisis issues.
Collapse
Affiliation(s)
- Xiaojuan Su
- School of Soil and Water Conservation, Southwest Forestry University, Kunming, 650224, China
| | - Pengfei Gao
- School of Soil and Water Conservation, Southwest Forestry University, Kunming, 650224, China
| | - Yuanchuan Ren
- College of Biological and Chemical Engineering (College of Agriculture), Panzhihua University, Panzhihua, Sichuan, 617000, P. R. China.
| | - Jieba Li
- School of Soil and Water Conservation, Southwest Forestry University, Kunming, 650224, China
| | - Nanqi Ren
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
Lalín-Pousa V, Conde-Cid M, Díaz-Raviña M, Arias-Estévez M, Fernández-Calviño D. Acetamiprid retention in agricultural acid soils: Experimental data and prediction. ENVIRONMENTAL RESEARCH 2025; 268:120835. [PMID: 39805418 DOI: 10.1016/j.envres.2025.120835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The overuse of pesticides in agriculture has led to widespread pollution of soils and water resources, becoming a problem of great concern. Nowadays, special attention is given to neonicotinoids, particularly acetamiprid, the only neonicotinoid insecticide allowed for outdoor use in the European Union. Once acetamiprid reaches the soil, adsorption/desorption is the main process determining its bioavailability and environmental fate. Therefore, in this work, the adsorption/desorption behaviour of acetamiprid in 60 agricultural soils was studied. The results indicate that acetamiprid has a low affinity for soil constituents, with values ranging from 0.2 to 4.28 L kg-1 for Kd(ads). At the same time, acetamiprid shows high desorption levels (up to 96.3%), indicating that it is poorly retained in soils, thus presenting high bioavailability and a potential risk for transport to other environmental compartments. Regarding the influence of soil properties on the adsorption/desorption process, soils with a high content of organic matter, clay, and exchangeable basic cations showed higher retention of acetamiprid, with greater adsorption and lower desorption. Finally, robust and universal models were successfully developed to predict the adsorption and desorption behaviour of acetamiprid in soil.
Collapse
Affiliation(s)
- Vanesa Lalín-Pousa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain
| | - Manuel Conde-Cid
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain.
| | - Montserrat Díaz-Raviña
- Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC, Universidad de Vigo, Unidad asociada al CSIC, Spain; Misión Biológica de Galicia del Consejo Superior de Investigaciones Científicas (MBG-CSIC), Santiago de Compostela, Spain
| | - Manuel Arias-Estévez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC, Universidad de Vigo, Unidad asociada al CSIC, Spain
| | - David Fernández-Calviño
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, Ourense, 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Universidade de Vigo, Ourense, 32004, Spain; Comunidades Microbianas de suelos (id. UA 1678), MBG-CSIC, Universidad de Vigo, Unidad asociada al CSIC, Spain
| |
Collapse
|
3
|
Zhao G, Zhang R, Zhong F, Li Y, Mao D, Mutter TY, Huang X. Development of multifunctional immobilized bacterial agents for multi-pesticides degradation and environment remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125548. [PMID: 39734040 DOI: 10.1016/j.envpol.2024.125548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/31/2024]
Abstract
The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function. This study developed immobilized bacterial agents containing the lactofen-degrading strain Bacillus sp. Za, the acetamiprid-degrading strain Pigmentiphaga sp. D-2, and the carbendazim-degrading strain Rhodococcus sp. djl-6. Preparation conditions, including activated carbon concentration, sodium alginate (SA), CaCl2, and immobilization time, were optimized using the response surface method (RSM). The degradation performance of the immobilized bacteria was evaluated, with degradation rates exceeding 70% for all three pesticides under conditions of 30 °C, pH 7.0, and 6% inoculation over 48 h. The immobilized bacterial agents were stored at pH 7.0 and 4 °C for 180 days, maintaining a preservation rate of 51.26% with a viable cell count of 1.04 × 108 CFU/g. These agents effectively remediated soil and water contaminated with multi-pesticides, achieving degradation rates of 92.50% and 98.50% for lactofen, 91.05% and 99.89% for acetamiprid, 88.43% and 98.99% for carbendazim within 21 in soil and 7 days in water, respectively. This study provides essential technical support for developing microbial agents capable of degrading multi-pesticides residues, with significant potential applications in agriculture and environmental protection.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Rongrong Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Fangya Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Yazhou Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Dongmei Mao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Thamer Y Mutter
- Department of Biology, College of Science, University of Anbar, Anbar, Iraq
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
4
|
Li P, Zhai W, Guo Q, Zou X, Wang Y, Gu Y, Liu X, Zhou Z, Wang P, Liu D. Effects of ammonium sulfate on the degradation and metabolism of dinotefuran in soil: Evidence from soil physicochemical properties and bacterial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176674. [PMID: 39368503 DOI: 10.1016/j.scitotenv.2024.176674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Ammonium sulfate and dinotefuran are widely used in agricultural practices; however, limited knowledge exists regarding the potential risks associated with their co-exposure. In this study, the impact of ammonium sulfate on the degradation of dinotefuran in four soils was investigated, and the formation of the main metabolites UF, DN, MNG, and NG was also determined. The underlying mechanisms were explored by the impact of ammonium sulfate on soil physicochemical properties as well as soil microorganisms. The half-life of dinotefuran sole exposure in soils were determined between 27.47 and 60.05 days. Co-exposure of ammonium sulfate significantly impeded the degradation of dinotefuran, resulting in 1.70-5.05 times longer half-life, reduced the content of the metabolites and changed their composition. Ammonium sulfate induced significant alterations in the structure and dominance of bacterial communities in the soils. The reduced relative abundance of Bacteroidota, Proteobacteria and Chloroflexi phyla related to dinotefuran degradation. Ammonium sulfate also led to a decrease in soil pH and organic matter content, which were negatively correlated with the degradation. PLS-SEM analysis revealed soil microbial diversity had a significant impact on the degradation of dinotefuran. The findings serve as a cautionary note regarding the risks of co-exposure to fertilizers and pesticides.
Collapse
Affiliation(s)
- Pengxi Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xuanyu Zou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yujue Wang
- Syngenta Crop Protection AG, Rosentalstrasse 67, CH-4002 Basel, Switzerland
| | - Yucheng Gu
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
5
|
Ligtelijn M, Henrik Barmentlo S, van Gestel CAM. Field-realistic doses of the neonicotinoid acetamiprid impact natural soil arthropod community diversity and structure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124568. [PMID: 39029864 DOI: 10.1016/j.envpol.2024.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/29/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The neonicotinoid acetamiprid is used as a foliar insecticide spray, which results in direct exposure of a wide variety of soil organisms. Laboratory testing indicated that acetamiprid is toxic to the Collembola (springtails) species Folsomia candida, while Acari (mites) seem relatively insensitive to neonicotinoids. Since such opposing effects on different soil arthropods might imbalance natural arthropod communities, this study determined: (i) if field-realistic doses of acetamiprid affect the abundance and diversity in soil arthropod communities, and (ii) whether these potential effects are short-term or persist after degradation of acetamiprid. Intact soil cores collected from an untreated grassland field were placed in the mesocosm set up 'CLIMECS', and the naturally sourced communities were exposed to a control and increasing field-realistic doses of acetamiprid (i.e. 0, 0.05, 0.2, 0.8 mg a.s./kg dry soil). Before and 7 and 54 days after spraying the insecticide, the abundance of mites and springtails and springtail diversity were assessed. Springtail and mite abundances were similar at the start of the experiment, but springtail abundance was significantly lowered while mite abundance increased shortly after exposure to increasing doses of acetamiprid. At the highest dose, springtail numbers decreased by 53% on average while the number of mites increased by 26%. This effect was no longer visible after 54 days, suggesting recovery of the community as a whole reflected by observed changes in community dissimilarity: shortly after application springtail communities clearly diverged from the control in terms of species composition, while communities converged again in the long-term. With our results, we are the first to show that field-realistic applications of N-nitroguanidine neonicotinoids can significantly impact natural soil fauna communities, which might have implications for soil ecosystem functioning.
Collapse
Affiliation(s)
- Michella Ligtelijn
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands; BirdEyes, Centre for Global Ecological Change at the Faculties of Science & Engineering and Campus Fryslân, University of Groningen, Zaailand 110, 8911 BN, Leeuwarden, the Netherlands.
| | - S Henrik Barmentlo
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Kárpáti Z, Szelényi MO, Tóth Z. Exposure to an insecticide formulation alters chemosensory orientation, but not floral scent detection, in buff-tailed bumblebees (Bombus terrestris). Sci Rep 2024; 14:14622. [PMID: 38918480 PMCID: PMC11199514 DOI: 10.1038/s41598-024-65388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Although pesticide-free techniques have been developed in agriculture, pesticides are still routinely used against weeds, pests, and pathogens worldwide. These agrochemicals pollute the environment and can negatively impact human health, biodiversity and ecosystem services. Acetamiprid, an approved neonicotinoid pesticide in the EU, may exert sub-lethal effects on pollinators and other organisms. However, our knowledge on the scope and severity of such effects is still incomplete. Our experiments focused on the effects of the insecticide formulation Mospilan (active ingredient: 20% acetamiprid) on the peripheral olfactory detection of a synthetic floral blend and foraging behaviour of buff-tailed bumblebee (Bombus terrestris) workers. We found that the applied treatment did not affect the antennal detection of the floral blend; however, it induced alterations in their foraging behaviour. Pesticide-treated individuals started foraging later, and the probability of finding the floral blend was lower than that of the control bumblebees. However, exposed bumblebees found the scent source faster than the controls. These results suggest that acetamiprid-containing Mospilan may disrupt the activity and orientation of foraging bumblebees. We hypothesize that the observed effects of pesticide exposure on foraging behaviour could be mediated through neurophysiological and endocrine mechanisms. We propose that future investigations should clarify whether such sub-lethal effects can affect pollinators' population dynamics and their ecosystem services.
Collapse
Affiliation(s)
- Zsolt Kárpáti
- Department of Chemical Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Magdolna Olívia Szelényi
- Department of Chemical Ecology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
- National Laboratory for Health Security, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Tóth
- Department of Zoology, Plant Protection Institute, HUN-REN Centre for Agricultural Research, Budapest, Hungary.
| |
Collapse
|
7
|
Ji S, Cheng H, Rinklebe J, Liu X, Zhu T, Wang M, Xu H, Wang S. Remediation of neonicotinoid-contaminated soils using peanut shell biochar and composted chicken manure: Transformation mechanisms of geochemical fractions. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133619. [PMID: 38310841 DOI: 10.1016/j.jhazmat.2024.133619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Soil remediation techniques are promising approaches to relieve the adverse environmental impacts in soils caused by neonicotinoids application. This study systematically investigated the remediation mechanisms for peanut shell biochar (PSB) and composted chicken manure (CCM) on neonicotinoid-contaminated soils from the perspective of transformation of geochemical fractions by combining a 3-step sequential extraction procedure and non-steady state model. The neonicotinoid geochemical fractions were divided into labile, moderate-adsorbed, stable-adsorbed, bound, and degradable fractions. The PSB and CCM addition stimulated the neonicotinoid transformation in soils from labile fraction to moderate-adsorbed and stable-adsorbed fractions. Compared with unamended soils, the labile fractions decreased from 47.6% ± 11.8% of the initial concentrations to 12.1 ± 9.3% in PSB-amended soils, and 7.1 ± 4.9% in PSB and CCM-amended soils, while the proportions of moderate-adsorbed and stable-adsorbed fractions correspondingly increased by 1.8-2.4 times and 2.3-4.8 times, respectively. A small proportion (<4.8%) in bound fractions suggested there were rather limited bound-residues after 48 days incubation. The PSB stimulated the -NO2-containing neonicotinoid-degraders, which promoted the degradable fractions of corresponding neonicotinoids by 8.2 ± 6.3%. Degradable fraction of neonicotinoids was the dominant fate in soils, which accounted for 58.3 ± 16.7%. The findings made beneficial theoretical supplements and provided valuable empirical evidence for the remediation of neonicotinoid-contaminated soils.
Collapse
Affiliation(s)
- Shu Ji
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Haomiao Cheng
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Tengyi Zhu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Menglei Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Shanghai Construction No.2 (Group) Co., Ltd, Shanghai 200080, China
| | - Hanyang Xu
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shengsen Wang
- School of Hydraulic Science and Engineering, School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
8
|
Cheng H, Xu H, Guo M, Zhu T, Cai W, Miao L, Ji S, Tang G, Liu X. Spatiotemporal dynamics and modeling of thiacloprid in paddy multimedia systems with the effect of wetting-drying cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123187. [PMID: 38123113 DOI: 10.1016/j.envpol.2023.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
The widespread presence of thiacloprid (THI), a neonicotinoid, raises concerns for human health and the aquatic environment due to its persistence, toxicity, and bioaccumulation. The fate of THI in paddy multimedia systems is mainly governed by irrigation practices, but the potential impacts remain poorly documented. This study investigated the effects of water management practices on THI spatiotemporal dynamics in paddy multimedia systems by combining soil column experiments and a non-steady-state multimedia model. The results indicated the wetting-drying cycle (WDC) irrigation reduced THI occurrences in environmental phases (i.e., soil, interstitial water, and overlying water) and accelerated the THI loss through the THI aerobic degradation process. THI occurrences in the soil and water phases decreased from 18.8% for conventional flooding (CF) treatment to 9.2% for severe wetting-drying cycle (SW) treatment after 29 days, while the half-lives shortened from 11.1 days to 7.3 days, respectively. Meanwhile, the WDC decreased THI outflow from leakage water, which reduced the THI risk of leaching. There was no significant difference in THI plant uptake and volatilization between CF and WDC treatments. The mean proportions of THI fate in paddy multimedia systems followed the order: THI degradation (57.7%), outflow from leakage water (25.5%), occurrence in soil (12.4%), plant uptake (3.4%), occurrence in interstitial water (0.7%), occurrence in overlying water (0.3%), volatilization (<0.1%) after 29 days. The sensitivity analysis identified the soil organic carbon partition coefficient (KOC) as the most sensitive parameter affecting THI's fate. In addition, the topsoil layers of 0-4 cm were the main sink of THI, holding 67% of THI occurrence in the soil phase. The THI occurrence in interstitial water was distributed evenly throughout the soil profile. These findings made beneficial theoretical supplements and provided valuable empirical evidence for water management practices to reduce the THI ecological risk.
Collapse
Affiliation(s)
- Haomiao Cheng
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Hanyang Xu
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Min Guo
- Agricultural College, Yangzhou University, 225009, Yangzhou, China
| | - Tengyi Zhu
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Wei Cai
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Shu Ji
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guanlong Tang
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China; Huaxin Design Group CO., Ltd., Wuxi, 214072, China
| | - Xiang Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
9
|
He J, Li J, Gao Y, He X, Hao G. Nano-based smart formulations: A potential solution to the hazardous effects of pesticide on the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131599. [PMID: 37210783 DOI: 10.1016/j.jhazmat.2023.131599] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
Inefficient usage, overdose, and post-application losses of conventional pesticides have resulted in severe ecological and environmental issues, such as pesticide resistance, environmental contamination, and soil degradation. Advances in nano-based smart formulations are promising novel methods to decrease the hazardous impacts of pesticide on the environment. In light of the lack of a systematic and critical summary of these aspects, this work has been structured to critically assess the roles and specific mechanisms of smart nanoformulations (NFs) in mitigating the adverse impacts of pesticide on the environment, along with an evaluation of their final environmental fate, safety, and application prospects. Our study provides a novel perspective for a better understanding of the potential functions of smart NFs in reducing environmental pollution. Additionally, this study offers meaningful information for the safe and effective use of these nanoproducts in field applications in the near future.
Collapse
Affiliation(s)
- Jie He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Jianhong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing 100193, PR China; College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, PR China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
10
|
Li X, Zhang Q, Zhang X, Shen J, Sun Z, Ma F, Wu B, Gu Q. Novel Insights into the Influence of Soil Microstructure Characteristics on the Migration and Residue of Light Non-Aqueous Phase Liquid. TOXICS 2022; 11:16. [PMID: 36668742 PMCID: PMC9863872 DOI: 10.3390/toxics11010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Understanding the influence of soil microstructure on light non-aqueous phase liquids (LNAPLs) behavior is critical for predicting the formation of residual LNAPLs under spill condition. However, the roles of soil particle and pore on LNAPLs migration and residue remains unclear. Here, the experiment simulated an LNAPLs (diesel) spill that was performed in fourteen types of soils, and the key factors affecting diesel behavior are revealed. There were significant differences between fourteen types of soils, with regard to the soil particle, soil pore, and diesel migration and residue. After 72 h of leakage, the migration distance of diesel ranged from 3.42 cm to 8.82 cm in the soils. Except for sandy soil, diesel was mainly distributed in the 0−3 cm soil layer, and the residual amounts were 7.85−26.66 g/kg. It was further confirmed from microstructure that the consistency of soil particle and volume of soil macropores (0.05−7.5 μm) are important for diesel residue in the 0−1 cm soil layer and migration distance. The large soil particles corresponding to 90% of volume fraction and volume of soil mesopores (<0.05 μm) are key factors affecting diesel residue in the 1−3 cm soil layer. The result helps to further comprehend the formation mechanism of residual LNAPLs in the soil.
Collapse
Affiliation(s)
- Xiaodong Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qian Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xueli Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jialun Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zongquan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bin Wu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|