1
|
Crank KC, Clements E, Barber C, Papp K, Gerrity D. Risk of gastrointestinal illness due to Campylobacter exposure in urban waterways for unsheltered persons experiencing homelessness. WATER RESEARCH 2025; 282:123773. [PMID: 40347896 DOI: 10.1016/j.watres.2025.123773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/14/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
As the population of persons experiencing homelessness (PEHs) continues to grow in urban areas, including Las Vegas in Southern Nevada, it becomes increasingly important to quantify and mitigate health risks encountered by this vulnerable population. This study examines exposure risks from Campylobacter, a leading cause of bacterial gastroenteritis, among unsheltered PEHs who utilize untreated water from Las Vegas' flood control tunnels and washes for personal hygiene and cleaning. Utilizing quantitative microbial risk assessment (QMRA), we evaluated three exposure scenarios: direct bathing, toothbrushing, and hand-to-mouth contact following hand submersion. The median probability of illness for a single toothbrushing (5 %) or bathing event (5 %) exceeded the adopted risk threshold of 3.2 %, with estimated median annual risks reaching 36 % under monthly exposure frequencies. High concentrations of Campylobacter in these urban waterways underscore the urgent need for targeted interventions, including improved access to clean water and sanitation facilities, to mitigate the health risks faced by PEHs. This study provides a step forward in understanding and addressing the risks of interacting with water in urban waterways, including flood control infrastructure.
Collapse
Affiliation(s)
- Katherine C Crank
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193, USA.
| | - Emily Clements
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193, USA
| | - Casey Barber
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193, USA; School of Public Health, University of Nevada Las Vegas, 4700 S. Maryland Parkway, Las Vegas, NV, 89119, USA
| | - Katerina Papp
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193, USA
| | - Daniel Gerrity
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193, USA
| |
Collapse
|
2
|
Thompson KA, Ray H, Gerrity D, Quiñones O, Dano E, Prieur J, Vanderford B, Steinle-Darling E, Dickenson ERV. Sources of per- and polyfluoroalkyl substances in an arid, urban, wastewater-dominated watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173361. [PMID: 38777060 DOI: 10.1016/j.scitotenv.2024.173361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) enter surface waters from various sources such as wastewater treatment plants, fire-fighting sites, and PFAS-producing and PFAS-using industries. The Las Vegas Wash in Southern Nevada of the United States (U.S.) conveys wastewater effluent from the Las Vegas metropolitan area to Lake Mead, a drinking water source for millions of people in the U.S. Southwest. PFAS have previously been detected in the Las Vegas Wash, but PFAS sources were not identified. In this study, upstream wash tributaries, wastewater treatment effluents, and shallow groundwater wells were sampled in multiple campaigns during dry-weather conditions to investigate possible PFAS sources. Out of 19 PFAS, two short-chain PFAS-perfluoropentanoic acid (48 % of the total molar concentration) and perfluorohexanoic acid (32 %)-comprised the majority of PFAS loading measured in the Las Vegas Wash, followed by perfluorooctanoic acid (9 %). On a mass loading basis, the majority of total measured PFAS (approximately 90 %) and at least 48 % of each specific PFAS in the Las Vegas Wash likely entered via municipal wastewater effluents, of which the main source was likely residential wastewater. One of the drainage areas with a major civilian airport was identified as a potential source of relatively enriched perfluorosulfonic acids to a small wash tributary and shallow groundwater samples. Nonetheless, that tributary contributed at most 15 % of any specific PFAS to the mainstem of the Las Vegas Wash. Total PFAS concentrations were relatively low for the small tributary associated with an urban smaller airport and the lack of flow in the tributary channel immediately downgradient of an Air Force base indicates the smaller airport and base were unlikely significant PFAS sources to the Las Vegas Wash. Overall, this study demonstrated effective PFAS source investigation methodology and the importance of wastewater effluent as a PFAS environmental pathway.
Collapse
Affiliation(s)
- Kyle A Thompson
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA; Carollo Engineers, Inc., Austin, TX, USA
| | - Hannah Ray
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA
| | - Daniel Gerrity
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA
| | - Oscar Quiñones
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA
| | - Eric Dano
- Water Resources, Southern Nevada Water Authority, Las Vegas, NV, USA
| | - James Prieur
- Water Resources, Southern Nevada Water Authority, Las Vegas, NV, USA
| | - Brett Vanderford
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA
| | | | - Eric R V Dickenson
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA.
| |
Collapse
|
3
|
Remesh AT, Viswanathan R. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:121-135. [PMID: 38413544 DOI: 10.1007/s12560-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.
Collapse
|
4
|
Harrington A, Vo V, Moshi MA, Chang CL, Baker H, Ghani N, Itorralba JY, Papp K, Gerrity D, Moser D, Oh EC. Environmental Surveillance of Flood Control Infrastructure Impacted by Unsheltered Individuals Leads to the Detection of SARS-CoV-2 and Novel Mutations in the Spike Gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:410-417. [PMID: 38752195 PMCID: PMC11095249 DOI: 10.1021/acs.estlett.3c00938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 05/18/2024]
Abstract
In the United States, the growing number of people experiencing homelessness has become a socioeconomic crisis with public health ramifications, recently exacerbated by the COVID-19 pandemic. We hypothesized that the environmental surveillance of flood control infrastructure may be an effective approach to understand the prevalence of infectious disease. From December 2021 through July 2022, we tested for SARS-CoV-2 RNA from two flood control channels known to be impacted by unsheltered individuals residing in upstream tunnels. Using qPCR, we detected SARS-CoV-2 RNA in these environmental water samples when significant COVID-19 outbreaks were occurring in the surrounding community. We also performed whole genome sequencing to identify SARS-CoV-2 lineages. Variant compositions were consistent with those of geographically and temporally matched municipal wastewater samples and clinical specimens. However, we also detected 10 of 22 mutations specific to the Alpha variant in the environmental water samples collected during January 2022-one year after the Alpha infection peak. We also identified mutations in the spike gene that have never been identified in published reports. Our findings demonstrate that environmental surveillance of flood control infrastructure may be an effective tool to understand public health conditions among unsheltered individuals-a vulnerable population that is underrepresented in clinical surveillance data.
Collapse
Affiliation(s)
- Anthony Harrington
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Van Vo
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Michael A. Moshi
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Ching-Lan Chang
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Hayley Baker
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Nabih Ghani
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Jose Yani Itorralba
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| | - Katerina Papp
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas Nevada 89193, United States
| | - Daniel Gerrity
- Southern
Nevada Water Authority, P.O. Box 99954, Las Vegas Nevada 89193, United States
| | - Duane Moser
- Division
of Hydrologic Sciences, Desert Research
Institute, Las Vegas, Nevada 89119, United States
| | - Edwin C. Oh
- Laboratory
of Neurogenetics and Precision Medicine, College of Sciences, Neuroscience Interdisciplinary
Ph.D. program, Department of Brain Health, Department of Internal Medicine, Kirk Kerkorian
School of Medicine at UNLV, University of
Nevada Las Vegas, Las Vegas, Nevada 89154, United States
| |
Collapse
|
5
|
Yu Q, Olesen SW, Duvallet C, Grad YH. Assessment of sewer connectivity in the United States and its implications for equity in wastewater-based epidemiology. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003039. [PMID: 38630670 PMCID: PMC11023481 DOI: 10.1371/journal.pgph.0003039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Wastewater-based epidemiology is a promising public health tool that can yield a more representative view of the population than case reporting. However, only about 80% of the U.S. population is connected to public sewers, and the characteristics of populations missed by wastewater-based epidemiology are unclear. To address this gap, we used publicly available datasets to assess sewer connectivity in the U.S. by location, demographic groups, and economic groups. Data from the U.S. Census' American Housing Survey revealed that sewer connectivity was lower than average when the head of household was American Indian and Alaskan Native, White, non-Hispanic, older, and for larger households and those with higher income, but smaller geographic scales revealed local variations from this national connectivity pattern. For example, data from the U.S. Environmental Protection Agency showed that sewer connectivity was positively correlated with income in Minnesota, Florida, and California. Data from the U.S. Census' American Community Survey and Environmental Protection Agency also revealed geographic areas with low sewer connectivity, such as Alaska, the Navajo Nation, Minnesota, Michigan, and Florida. However, with the exception of the U.S. Census data, there were inconsistencies across datasets. Using mathematical modeling to assess the impact of wastewater sampling inequities on inferences about epidemic trajectory at a local scale, we found that in some situations, even weak connections between communities may allow wastewater monitoring in one community to serve as a reliable proxy for an interacting community with no wastewater monitoring, when cases are widespread. A systematic, rigorous assessment of sewer connectivity will be important for ensuring an equitable and informed implementation of wastewater-based epidemiology as a public health monitoring system.
Collapse
Affiliation(s)
- QinQin Yu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Scott W. Olesen
- Biobot Analytics, Inc., Cambridge, Massachusetts, United States of America
| | - Claire Duvallet
- Biobot Analytics, Inc., Cambridge, Massachusetts, United States of America
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Gerrity D, Crank K, Oh EC, Quinones O, Trenholm RA, Vanderford BJ. Wastewater surveillance of high risk substances in Southern Nevada: Sucralose normalization to translate data for potential public health action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168369. [PMID: 37951274 DOI: 10.1016/j.scitotenv.2023.168369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
The COVID-19 pandemic highlighted the value of wastewater surveillance in providing unbiased assessments of incidence/prevalence for infectious disease targets, ultimately leading to the development of local, state, and national programs across the United States. To address the growing epidemic of drug abuse, there have been calls to extend these programs to high risk substances (HRS) and metabolites, while leveraging the experience gained during the pandemic and from ongoing efforts in other countries. This study further advances the science of wastewater surveillance for HRS by (1) highlighting analytical and sewer transport considerations, (2) proposing sucralose normalization to adjust for varying human urine/fecal load and confounded population estimates (e.g., high tourism areas), and (3) characterizing temporal and geographic trends in HRS use. This one-year study across eight sewersheds in Southern Nevada (208 total samples) monitored concentrations of 17 pharmaceuticals and personal care products (PPCPs) and 22 HRS and metabolites, including natural, semi-synthetic, and synthetic opioids. The data indicated a ∼200 % increase in heroin and methamphetamine use since 2010, a stark increase in fentanyl consumption beginning in October 2022, and statistically significant differences in HRS consumption patterns between sewersheds and on certain dates. Notably, the latter outcome highlights the potential for wastewater surveillance data to be strategically translated into public health action to reduce and/or more rapidly respond to overdoses.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States.
| | - Katherine Crank
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Edwin C Oh
- Laboratory of Neurogenetics and Precision Medicine, Nevada Institute of Personalized Medicine, Department of Internal Medicine, UNLV School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154, United States
| | - Oscar Quinones
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Brett J Vanderford
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| |
Collapse
|
7
|
Vo V, Harrington A, Chang CL, Baker H, Moshi MA, Ghani N, Itorralba JY, Tillett RL, Dahlmann E, Basazinew N, Gu R, Familara TD, Boss S, Vanderford F, Ghani M, Tang AJ, Matthews A, Papp K, Khan E, Koutras C, Kan HY, Lockett C, Gerrity D, Oh EC. Identification and genome sequencing of an influenza H3N2 variant in wastewater from elementary schools during a surge of influenza A cases in Las Vegas, Nevada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162058. [PMID: 36758698 PMCID: PMC9909754 DOI: 10.1016/j.scitotenv.2023.162058] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 05/25/2023]
Abstract
Real-time surveillance of infectious diseases at schools or in communities is often hampered by delays in reporting due to resource limitations and infrastructure issues. By incorporating quantitative PCR and genome sequencing, wastewater surveillance has been an effective complement to public health surveillance at the community and building-scale for pathogens such as poliovirus, SARS-CoV-2, and even the monkeypox virus. In this study, we asked whether wastewater surveillance programs at elementary schools could be leveraged to detect RNA from influenza viruses shed in wastewater. We monitored for influenza A and B viral RNA in wastewater from six elementary schools from January to May 2022. Quantitative PCR led to the identification of influenza A viral RNA at three schools, which coincided with the lifting of COVID-19 restrictions and a surge in influenza A infections in Las Vegas, Nevada, USA. We performed genome sequencing of wastewater RNA, leading to the identification of a 2021-2022 vaccine-resistant influenza A (H3N2) 3C.2a1b.2a.2 subclade. We next tested wastewater samples from a treatment plant that serviced the elementary schools, but we were unable to detect the presence of influenza A/B RNA. Together, our results demonstrate the utility of near-source wastewater surveillance for the detection of local influenza transmission in schools, which has the potential to be investigated further with paired school-level influenza incidence data.
Collapse
Affiliation(s)
- Van Vo
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Anthony Harrington
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Ching-Lan Chang
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Hayley Baker
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Michael A Moshi
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Nabih Ghani
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Jose Yani Itorralba
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Elizabeth Dahlmann
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Natnael Basazinew
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Richard Gu
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Tiffany D Familara
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Sage Boss
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Fritz Vanderford
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Moonis Ghani
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Austin J Tang
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Alice Matthews
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Katerina Papp
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Carolina Koutras
- R-Zero Systems, Inc., 345 W Bearcat Dr Suite #100, South Salt Lake, UT 84115, USA
| | - Horng-Yuan Kan
- Southern Nevada Health District, Las Vegas, NV 89106, USA
| | | | - Daniel Gerrity
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Edwin C Oh
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Department of Internal Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
8
|
Harrington A, Vo V, Papp K, Tillett RL, Chang CL, Baker H, Shen S, Amei A, Lockett C, Gerrity D, Oh EC. Urban monitoring of antimicrobial resistance during a COVID-19 surge through wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158577. [PMID: 36087661 PMCID: PMC9450474 DOI: 10.1016/j.scitotenv.2022.158577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 05/31/2023]
Abstract
During the early phase of the COVID-19 pandemic, infected patients presented with symptoms similar to bacterial pneumonias and were treated with antibiotics before confirmation of a bacterial or fungal co-infection. We reasoned that wastewater surveillance could reveal potential relationships between reduced antimicrobial stewardship, specifically misprescribing antibiotics to treat viral infections, and the occurrence of antimicrobial resistance (AMR) in an urban community. Here, we analyzed microbial communities and AMR profiles in sewage samples from a wastewater treatment plant (WWTP) and a community shelter in Las Vegas, Nevada during a COVID-19 surge in December 2020. Using a respiratory pathogen and AMR enrichment next-generation sequencing panel, we identified four major phyla in the wastewater, including Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria. Consistent with antibiotics that were reportedly used to treat COVID-19 infections (e.g., fluoroquinolones and beta-lactams), we also measured a significant spike in corresponding AMR genes in the wastewater samples. AMR genes associated with colistin resistance (mcr genes) were also identified exclusively at the WWTP, suggesting that multidrug resistant bacterial infections were being treated during this time. We next compared the Las Vegas sewage data to local 2018-2019 antibiograms, which are antimicrobial susceptibility profile reports about common clinical pathogens. Similar to the discovery of higher levels of beta-lactamase resistance genes in sewage during 2020, beta-lactam antibiotics accounted for 51 ± 3 % of reported antibiotics used in antimicrobial susceptibility tests of 2018-2019 clinical isolates. Our data highlight how wastewater-based epidemiology (WBE) can be leveraged to complement more traditional surveillance efforts by providing community-level data to help identify current and emerging AMR threats.
Collapse
Affiliation(s)
- Anthony Harrington
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Van Vo
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Katerina Papp
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Ching-Lan Chang
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Hayley Baker
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Shirley Shen
- Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Amei Amei
- Department of Mathematical Sciences, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | | | - Daniel Gerrity
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Edwin C Oh
- Laboratory of Neurogenetics and Precision Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Department of Internal Medicine, UNLV School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|