1
|
Buakaew T, Ratanatamskul C. Enhanced pharmaceutical removal from building wastewater by the novel integrated system of anaerobic baffled biofilm-membrane bioreactor and UV/O 3: Microbial community, occurrence of bio-intermediates and post-treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124657. [PMID: 40010280 DOI: 10.1016/j.jenvman.2025.124657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
This research aimed to develop the novel integrated system of anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) (with and without microaeration) and UV/O3 for removal of target pharmaceuticals (ciprofloxacin (CIP), caffeine (CAF), sulfamethoxazole (SMX) and diclofenac (DCF)) from building wastewater. The investigation was performed to elucidate how microaeration affected the removal performances, degradation kinetics and pathways of bio-intermediates of the AnBB-MBR. Two AnBB-MBR reactors - R1: AnBB-MBR (without microaeration) and R2: AnBB-MBR with microaeration at 0.93 LO2/LFeed - were operated at the same hydraulic retention time (HRT) of 30 h. The UV/O3 was selected as the post-treatment system. While UV alone slightly removed CIP without the removal of other compounds. After 150 min of the UV/O3, the R1 with UV/O3 achieved 97.31-100% removal efficiency of targeted pharmaceuticals and increased to 99.47-100% with the R2 integrated with UV/O3. The obtained pseudo-first order kinetic rate constants of the UV/O3 in treating the permeate of R1 were 0.0235, 0.004, 0.0423 and 0.097 min-1 for CIP, CAF, SMX and DCF, respectively. Whereas the obtained pseudo-first order kinetic rate constants of the UV/O3 in treating the permeate of R2 were 0.021, 0.0338, 0.0511 and 0.0527 min-1 for CIP, CAF, SMX and DCF, respectively. For the major microorganisms involved in targeted pharmaceutical removal in the R2 under microaerobic conditions included ammonia oxidizing bacteria (AOB) and methanotrophs, while Bacillus, Longilinea, Clostridium and Lactivibrio were possibly responsible for pharmaceutical removal in the R1 under anaerobic conditions. The differences of bio-intermediates between anaerobic and microaerobic conditions were exclusively identified. In addition, the integration of AnBB-MBR with microaeration and UV/O3 was more effective in removing a wide variety of bio-intermediates than the case of the integrated system without microaeration. Therefore, the integrated system of AnBB-MBR with microaeration and UV/O3 can be a promising technology for pharmaceutical removal from building wastewater.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Wang Y, Liu Q, Ran H, Peng P, Wang Y, Peng G, Wu Y, Wen X. Residual ciprofloxacin in chicken manure inhibits methane production in an anaerobic digestion system. Poult Sci 2025; 104:104539. [PMID: 39546921 PMCID: PMC11609544 DOI: 10.1016/j.psj.2024.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Anaerobic digestion (AD) is commonly used to dispose of laying hen manure. However, veterinary antibiotic residues present in chicken manure may affect the AD process. Here, the effects of three types of veterinary antibiotics commonly used in laying hen breeding on AD were explored. Manures containing antibiotics at two different concentrations were continuously added during AD for 5 days: amoxicillin (HAMX: 145.06 mg/kg, LAMX: 57.88 mg/kg), doxycycline (HDOC: 183.61 mg/kg, LDOC: 98.00 mg/kg), and ciprofloxacin (HCIP: 96.34 mg/kg, LCIP: 40.43 mg/kg). Compared with a control with no veterinary antibiotics, the amoxicillin and doxycycline groups presented no significant effects on biogas production, methane production, VFA concentration, acetic acid concentration or the pH of the AD system (P > 0.05). However, compared with the control, the ciprofloxacin groups presented significantly inhibited biogas and methane production during AD (P < 0.05), and the HCIP and LCIP groups presented significantly decreased biogas (47.82% and 45.37%, respectively) and methane (58.24% and 52.55%, respectively) production (P < 0.05). Moreover, the VFA and acetic acid concentrations of the ciprofloxacin groups were significantly higher than those of control during the entire AD period (P < 0.05), and the pH value at the withdrawal stage was significantly lower than that of the control group (P < 0.01), with no significant difference between the HCIP and LCIP groups (P > 0.05). Our results suggest that ciprofloxacin causes VFA and acetic acid accumulation in AD systems, thereby reducing the pH of the systems and inhibiting methanogen growth, ultimately reducing methane production in the AD systems. These findings contribute to a deeper understanding of the impact of ciprofloxacin on methane production in AD systems and offer some considerations for the application of AD systems.
Collapse
Affiliation(s)
- Yiting Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qing Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Hongli Ran
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Pingcai Peng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Guoliang Peng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Yinbao Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, and the Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| |
Collapse
|
3
|
Zhao Y, He J, Pang H, Li L, Cui X, Liu Y, Jiang W, Liu X. Anaerobic digestion and biochar/hydrochar enhancement of antibiotic-containing wastewater: Current situation, mechanism and future prospects. ENVIRONMENTAL RESEARCH 2025; 264:120087. [PMID: 39455046 DOI: 10.1016/j.envres.2024.120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
The increasing consumption of antibiotics by humans and animals and their inappropriate disposal have increased antibiotic load in municipal and pharmaceutical industry waste, resulting in severe public health risks worldwide. Anaerobic digestion (AD) is the main force of antibiotic-containing wastewater treatment, and the adaptability of biochar/hydrochar (BC/HC) makes it an attractive addition to AD systems, which aim to promote methane production efficiency. Nevertheless, further studies are needed to better understand the multifaceted function of BC/HC and its role in antibiotic-containing wastewater AD. This review article examines the current status of AD of antibiotic-containing wastewater and the effects of different preparation conditions on the physicochemical properties of BC/HC and AD status. The incorporation of BC/HC into the AD process has several potential benefits, contingent upon the physical and chemical properties of BC/HC. These benefits include mitigation of antibiotic toxicity, establishment of a stable system, enrichment of functional microorganisms and enhancement of direct interspecies electron transfer. The mechanism by which BC/HC enhances the AD of antibiotic-containing wastewater, with focus on microbial enhancement, was analysed. A review of the literature revealed that the challenge of optimization and process improvement must be addressed to enhance efficiency and clarify the mechanism of BC/HC in the AD of antibiotic-containing wastewater. This review aims to provide significant insights and details into the BC/HC-enhanced AD of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Yuanyi Zhao
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Junguo He
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China.
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xinxin Cui
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Yunlong Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Weixun Jiang
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Xinping Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| |
Collapse
|
4
|
Yao B, Liu M, Zhang J, Hu X, Wang B, Liang RJ, Chen Y. Effect of long-term exposure to non-biodegradable and biodegradable microplastics in continuous anoxic/aerobic bioreactors: Nitrogen removal performance, microbial communities and functional gene responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123712. [PMID: 39675334 DOI: 10.1016/j.jenvman.2024.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The environmental hazards caused by microplastics (MPs) have received widespread attention, but the effects of non-biodegradable and biodegradable MPs of long-term presence on continuously operating sewage treatment bioreactors are not well known. In this study, we investigated the effect of a representative non-biodegradable MP, polyethylene terephthalate (PET), and a biodegradable MP, polylactic acid (PLA), on the nitrogen removal performance of conventional anoxic/aerobic (A/O) process. The NH4+-N removal efficiencies were suppressed to 91.7 ± 5.5% and 80.8 ± 4.1% at concentrations of 10 and 100 mg/L PLA, significantly (p < 0.05) lower than 96.3 ± 1.0% and 95.0 ± 1.5% with the presence of PET. PLA resulted in a significant (p < 0.05) decrease in adenosine triphosphate of living cells (cATP) and dehydrogenase activities. PLA enhanced redox stress and induced a series of oxidative stress reactions that were detrimental to the normal growth and metabolism of microorganisms. The relative abundance of several functional microorganisms (Nitrosomonas,Nitrospira and Ellin6067) and genes (amoA, amoB and amoC) associated with NH4+-N conversion were reduced. The potential risk of biodegradable MPs to the long-term wastewater treatment process cannot be ignored and needs to be emphasized.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Bin Wang
- Sichuan Engineering Research Center for Municipal Wastewater Distributed Treatment Technology, Chengdu, 610200, China
| | - Ren-Jun Liang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Yao B, Liu M, Yu L, Ni Q, Yuan C, Hu X, Feng H, Zhang J, Chen Y. Mechanism of biochar in alleviating the inhibition of anaerobic digestion under ciprofloxacin press. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135949. [PMID: 39341191 DOI: 10.1016/j.jhazmat.2024.135949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The antibiotic ciprofloxacin (CIP), detected in various aqueous environments, has broad-spectrum antimicrobial properties that can severely affect methanogenic performance in anaerobic systems. In this study, a novel strategy to alleviate the inhibition of AD performance under CIP press with the direct addition of biochar (BC) prepared from corn stover was proposed and the corresponding alleviation mechanism was investigated. When the dosage of BC was 5 and 20 g/L, the cumulative methane production in AD could reach 317.9 and 303.0 mL/g COD, and the CIP degradation efficiencies reached 94.1 % and 96.6 %, significantly higher than those of 123.0 mL/g COD and 81.2 % in the Control system. BC avoided excessive reactive oxygen species in anaerobic systems and induced severe oxidative stress response, while protecting the cell membrane and cell wall of microorganisms. Microorganisms could consume and utilize more organic extracellular polymeric substances for their growth and metabolism. When BC was involved in AD, fewer toxic intermediates were generated during CIP biodegradation, reducing acute and chronic toxicity in anaerobic systems. Microbial diversity suggested that BC could enrich functional microorganisms involved in direct interspecies electron transfer like Methanosaeta, norank_f_Bacteroidetes_vadinHA17, JGI-0000079-D21 and Syntrophomonas, thus facilitating the methanogenic process and CIP degradation. Genetic analyses showed that BC could effectively upregulate functional genes related to the conversion of butyrate-to-acetate and acetyl-to-methane under CIP stress, while functional gene abundance associated with CIP degradation enhanced partially, about encoding translocases, oxidoreductases, lyases, and ligases. Therefore, BC can be added to AD under CIP press to address its inhibited methanogenic performance.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Liqiang Yu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Changjie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haoran Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Carneiro RB, Gil-Solsona R, Subirats J, Restrepo-Montes E, Zaiat M, Santos-Neto ÁJ, Gago-Ferrero P. Biotransformation pathways of pharmaceuticals and personal care products (PPCPs) during acidogenesis and methanogenesis of anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135444. [PMID: 39153297 DOI: 10.1016/j.jhazmat.2024.135444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Jessica Subirats
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
7
|
Huang Z, Niu Q, He S, Li X, Qian C, He Y, Yang C. Effects of long-term exposure to zinc on performances of anaerobic digesters for swine wastewater treatment under various organic loading rates. CHEMOSPHERE 2024; 363:142843. [PMID: 39004151 DOI: 10.1016/j.chemosphere.2024.142843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The long-term performance of anaerobic digestion (AD) often decreases substantially when treating swine wastewater contaminated with heavy metals. However, the toxicological characteristics and mechanisms of continuous exposure to heavy metals under different organic loading rates (OLR) are still poorly understood. In these semi-continuous AD experiments, it was found that zinc concentrations of 40 mg/L only deteriorated the reductive environments of AD. In comparison, a concentration of 2.0 mg/L probably facilitated the reproduction of microorganisms in the operating digesters with a constant OLR of 0.51 g COD/(L·d). Nevertheless, when the OLR was increased to 2.30 g COD/(L·d), 2.0 mg/L zinc inhibited various life activities of microorganisms at the molecular level within only 10 days. Hence, even though 2.0 mg/L zinc could promote AD performances from a macroscopic perspective, it had potential inhibitory effects on AD. Therefore, this study deepens the understanding of the inhibitions caused by heavy metals on AD and the metabolic laws of anaerobic microorganisms in swine wastewater treatment. These results could be referred to for enhancing AD in the presence of zinc in practical swine wastewater treatment.
Collapse
Affiliation(s)
- Zhiwei Huang
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310012, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Chongxin Qian
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yuxin He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, 570228, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China.
| |
Collapse
|
8
|
Ghose A, Nuzelu V, Gupta D, Kimoto H, Takashima S, Harlin EW, Ss S, Ueda H, Koketsu M, Rangan L, Mitra S. Micropollutants (ciprofloxacin and norfloxacin) remediation from wastewater through laccase derived from spent mushroom waste: Fate, toxicity, and degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121857. [PMID: 39029166 DOI: 10.1016/j.jenvman.2024.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.
Collapse
Affiliation(s)
- Anamika Ghose
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Debaditya Gupta
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroki Kimoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shigeo Takashima
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eka Wahyuni Harlin
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Sonu Ss
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroshi Ueda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Latha Rangan
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
9
|
Carneiro RB, Gomes GM, Camargo FP, Zaiat M, Santos-Neto ÁJ. Anaerobic co-metabolic biodegradation of pharmaceuticals and personal care products driven by glycerol fermentation. CHEMOSPHERE 2024; 357:142006. [PMID: 38621493 DOI: 10.1016/j.chemosphere.2024.142006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Anaerobic digestion in two sequential phases, acidogenesis and methanogenesis, has been shown to be beneficial for enhancing the biomethane generation from wastewater. In this work, the application of glycerol (GOH) as a fermentation co-substrate during the wastewater treatment was evaluated on the biodegradation of different pharmaceuticals and personal care products (PPCPs). GOH co-digestion during acidogenesis led to a significant increase in the biodegradation of acetaminophen (from 78 to 89%), ciprofloxacin (from 25 to 46%), naproxen (from 73 to 86%), diclofenac (from 36 to 48%), ibuprofen (from 65 to 88%), metoprolol (from 45 to 59%), methylparaben (from 64 to 78%) and propylparaben (from 68 to 74%). The heterotrophic co-metabolism of PPCPs driven by glycerol was confirmed by the biodegradation kinetics, in which kbio (biodegradation kinetics constant) values increased from 0.18 to 2.11 to 0.27-3.60 L g-1-VSS d-1, for the operational phases without and with GOH, respectively. The assessment of metabolic pathways in each phase revealed that the prevalence of aromatic compounds degradation, metabolism of xenobiotics by cytochrome P450, and benzoate degradation routes during acidogenesis are key factors for the enzymatic mechanisms linked to the PPCPs co-metabolism. The phase separation of anaerobic digestion was effective in the PPCPs biodegradation, and the co-fermentation of glycerol provided an increase in the generation potential of biomethane in the system (energetic potential of 5.0 and 6.3 kJ g-1-CODremoved, without and with GOH, respectively). This study showed evidence that glycerol co-fermentation can exert a synergistic effect on the PPCPs removal during anaerobic digestion mediated by heterotrophic co-metabolism.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| | - Gisele M Gomes
- São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Franciele P Camargo
- Bioenergy Research Institute (IPBEN), UNESP- São Paulo State University, Rio Claro, SP, 13500-230, Brazil.
| | - Marcelo Zaiat
- São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
10
|
Guo Y, Askari N, Smets I, Appels L. A review on co-metabolic degradation of organic micropollutants during anaerobic digestion: Linkages between functional groups and digestion stages. WATER RESEARCH 2024; 256:121598. [PMID: 38663209 DOI: 10.1016/j.watres.2024.121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
The emerging presence of organic micropollutants (OMPs) in water bodies produced by human activities is a source of growing concern due to their environmental and health issues. Biodegradation is a widely employed treatment method for OMPs in wastewater owing to its high efficiency and low operational cost. Compared to aerobic degradation, anaerobic degradation has numerous advantages, including energy efficiency and superior performance for certain recalcitrant compounds. Nonetheless, the low influent concentrations of OMPs in wastewater treatment plants (WWTPs) and their toxicity make it difficult to support the growth of microorganisms. Therefore, co-metabolism is a promising mechanism for OMP biodegradation in which co-substrates are added as carbon and energy sources and stimulate increased metabolic activity. Functional microorganisms and enzymes exhibit significant variations at each stage of anaerobic digestion affecting the environment for the degradation of OMPs with different structural properties, as these factors substantially influence OMPs' biodegradability and transformation pathways. However, there is a paucity of literature reviews that explicate the correlations between OMPs' chemical structure and specific metabolic conditions. This study provides a comprehensive review of the co-metabolic processes which are favored by each stage of anaerobic digestion and attempts to link various functional groups to their favorable degradation pathways. Furthermore, potential co-metabolic processes and strategies that can enhance co-digestion are also identified, providing directions for future research.
Collapse
Affiliation(s)
- Yutong Guo
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Najmeh Askari
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium
| | - Ilse Smets
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F box 2424, Heverlee 3001, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS) Campus De Nayer, Jan Pieter De Nayerlaan 5, Sint-Katelijne-Waver 2860, Belgium.
| |
Collapse
|
11
|
Ramos JGVDS, Richter CP, Silva MA, Singolano GL, Hauagge G, Lorençon E, Junior ILC, Edwiges T, de Arruda PV, Vidal CMDS. Effects of ciprofloxacin on biogas production and microbial community composition in anaerobic digestion of swine wastewater in ASBR type reactor. ENVIRONMENTAL TECHNOLOGY 2024; 45:2076-2088. [PMID: 36621001 DOI: 10.1080/09593330.2022.2164744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In swine farming, antibiotics are often used to reduce disease and promote animal growth. Part of these compounds is not absorbed by the swine body, being excreted and later reaching the treatment systems, soil, and nearby waterbodies. This research sought to investigate the influence of adding ciprofloxacin (CIP) on the anaerobic digestion of swine wastewater. For that, a bench-scale anaerobic sequential batch reactor (ASBR) was used, with 5 L of working volume in six different phases, with volumetric organic loading rate (VOLR) and CIP dosage variation. According to the results, the optimal VOLR for the reactor was 0.60 ± 0.11 gSV L-1 d-1, resulting in biogas productivity of 0.51 ± 0.03 Lbiogas L-1 d-1. After initial stability, adding substrate with 0.5 mgCIP L-1 resulted in an abrupt drop of 82% in the productivity from the 7th to 11th day of addition, coinciding with volatile acids accumulation. Afterward, the reactor recovered and reached apparent stability, with productivity similar to the previous step without the drug. For 2.5 mgCIP L-1 in the substrate, the biogas productivity at equilibrium was 11.8% lower than in the phases with the same VOLR and 0.0 and 0.5 mgCIP L-1. Organic matter removals near 80% were achieved for both dosages. The 16S rRNA metagenomic analyses showed an increase in the relative abundance of most of the phyla found, indicating that the dosages used allowed the acclimatization of microorganisms and possibly the compound biodegradation.
Collapse
Affiliation(s)
- José Gustavo Venâncio da Silva Ramos
- Civil Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
- Technical Residency in Environmental Engineering and Management, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Camila Palacio Richter
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Maria Alice Silva
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Giordana Longo Singolano
- Civil Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Gabriel Hauagge
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Eduarda Lorençon
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | | | - Thiago Edwiges
- Biological and Environmental Sciences, The Federal University of Technology - Paraná (UTFPR), Medianeira, Brazil
| | - Priscila Vaz de Arruda
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | | |
Collapse
|
12
|
Ni Q, Chen Y, Lu L, Liu M. C4-HSL-mediated quorum sensing regulates nitrogen removal in activated sludge process at Low temperatures. ENVIRONMENTAL RESEARCH 2024; 244:117928. [PMID: 38128597 DOI: 10.1016/j.envres.2023.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The activated sludge process faces challenges in achieving adequate nitrification ability under low-temperature conditions. Therefore, we investigated the effects of different concentrations of exogenous N-butyryl-homoserine lactone (C4-HSL) on nitrogen removal in lab-scale sequencing batch reactors (SBRs) at 10 °C. The results revealed that both 10 and 100 μg/L of C4-HSL could improve NH4+-N removal efficiency by 26% and reduce the effluent TN concentration to below 15 mg/L. Analysis of extracellular polymeric substances (EPS) revealed that adding C4-HSL (especially 100 μg/L) reduced the protein-like substance content while increasing the humic and fulvic acid-like substance content in EPS. Protein-like substances could serve as carbon sources for denitrifiers, thus promoting denitrification. Moreover, exogenous C4-HSL increased the abundance of bacteria and genes associated with nitrification and denitrification. Further analysis of quorum sensing (QS) of microorganisms indicated that exogenous C4-HSL (especially 100 μg/L) promoted regulation, transportation, and decomposition functions in the QS process. Furthermore, CS, sdh, fum, and mdh gene expressions involved in the tricarboxylic acid (TCA) cycle were enhanced by 100 μg/L C4-HSL. Exogenous C4-HSL promoted microbial communication, microbial energy metabolism, and nitrogen metabolism, thereby improving the nitrogen removal efficiency of activated sludge systems at low temperatures. This study provides a feasible strategy for enhancing denitrogenation performance at low temperatures through exogenous C4-HSL.
Collapse
Affiliation(s)
- Qianhan Ni
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lanxin Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
13
|
Tang T, Wang Y, Zhao X. New insights into antibiotic stimulation of methane production during anaerobic digestion. CHEMOSPHERE 2024; 349:140785. [PMID: 38016524 DOI: 10.1016/j.chemosphere.2023.140785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Residual antibiotics in swine wastewater pose a critical challenge for stable anaerobic digestion (AD). This study offers fresh insights into the anaerobic treatment of swine wastewater. The results showed that the presence of three typical antibiotics (sulfamethoxazole (SMX), oxytetracycline (OTC) and ciprofloxacin (CIP)) in swine wastewater could promote methane production by stimulating the production and conversion of ethanol. Among them, SMX exhibited the strongest methane promotion effect, with the cumulative methane production increasing from 138.47 to 2204.19 mL/g VS. According to the microbial community structure, antibiotics could promote the growth of Corynebacterium, Lutispora and hydrogenotrophic methanogens (Methanosassiliicoccus, Methanobrevibacter, and Methanobacterium), but inhibit the enrichment of acetoclastic methanogen (Methanosaeta). The relative abundance of Methanosaeta decreased from 2.93-19.80% to 0.52-2.58% under antibiotic stress. Furthermore, there were significant differences in the influence of different antibiotic types on methanogenic pathways. Specifically, OTC and CIP promoted the acetoclastic and hydrogenotrophic pathways, respectively, to enhance methane production. However, SMX could promote both acetoclastic and hydrogenotrophic pathways.
Collapse
Affiliation(s)
- Taotao Tang
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China
| | - Yin Wang
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China.
| | - Xiaolong Zhao
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China
| |
Collapse
|
14
|
Ma W, Lian J, Rene ER, Zhang P, Liu X. Enhanced thyroxine removal from micro-polluted drinking water resources in a bio-electrochemical reactor amended with TiO 2@GAC particles: Efficiency, mechanism and energy consumption. ENVIRONMENTAL RESEARCH 2023; 237:116949. [PMID: 37625538 DOI: 10.1016/j.envres.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
A three-dimensional bioelectrochemical system (3D-BES) with both electrocatalytic and biodegradation functions was designed and developed to enhance iodine-containing hormone removal from micro-polluted oligotrophic drinking water sources and to reduce energy consumption. Thyroxine (T4) removal efficiency was 99.0% in the 3D-BES amendment with TiO2@GAC as the particle electrodes, which was 20.5% higher than the total efficiency of single biodegradation (28.7%) plus electrochemical decomposition (49.8%). The high T4 removal efficiency was a result of biochemical synergistic degradation, enhancement of electron transfer and utilization, enrichment of functional microorganisms, and the expression of dehalogenation functional genes. The electron transfer was increased by 1.63 times in 3D-BES compared to the 2D-BES, which contributed to: (i) ∼17.8% enhancement of dehalogenation, (ii) 2.35 times enhancement of the attenuation rate, and (iii) 60% reduction in energy consumption. Moreover, the aggregation of microorganisms and the hydrophobic T4 onto TiO2@GAC shortened the transfer distance of matter and energy, which induced the degradation steps to be shortened and the toxic decay to be accelerated from T4 and its metabolites. These comprehensive functions also enhanced the 31.8% ATPase activity, 7.3% abundance of the functional reductive dehalogenation genera, and 52.3% dehalogenation genes expression for Pseudomonas, Ancylobacter, and Dehalogenimonas, which contributed to an increase in T4 removal. This work provides an environmental-friendly biochemical synergistic method for the detoxification of T4 polluted water.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jiangru Lian
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Liu J, Yu J, Tan Y, Dang R, Zhou M, Hernández M, Lichtfouse E, Xiao L. Biomethane is produced by acetate cleavage, not direct interspecies electron transfer: genome-centric view and carbon isotope. BIORESOURCE TECHNOLOGY 2023; 387:129589. [PMID: 37532062 DOI: 10.1016/j.biortech.2023.129589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Understanding the source of methane (CH4) is of great significance for improving the anaerobic fermentation efficiency in bioengineering, and for mitigating the emission potential of natural ecosystems. Microbes involved in the process named direct interspecies electron transfer coupling with CO2 reduction, i.e., electrons released from electroactive bacteria to reduce CO2 into CH4, have attracted considerable attention for wastewater treatment in the past decade. However, how the synergistic effect of microbiota contributes to this anaerobic carbon metabolism accompanied by CH4 production still remains poorly understood, especial for wastewater with antibiotic exposure. Results show that enhancing lower-abundant acetoclastic methanogens and acetogenic bacteria, rather than electroactive bacteria, contributed to CH4 production, based on a metagenome-assembled genomes network analysis. Natural and artificial isotope tracing of CH4 further confirmed that CH4 mainly originated from acetoclastic methanogenesis. These findings reveal the contribution of direct acetate cleavage (acetoclastic methanogenesis) and provide insightsfor further regulation of methanogenic strategies.
Collapse
Affiliation(s)
- Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Yang Tan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Run Dang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Meng Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Marcela Hernández
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
16
|
Hua Z, Tang L, Wu M, Fu J. Graphene hydrogel improves S. putrefaciens' biological treatment of dye wastewater: Impacts of extracellular electron transfer and function of c-type cytochromes. ENVIRONMENTAL RESEARCH 2023; 236:116739. [PMID: 37524158 DOI: 10.1016/j.envres.2023.116739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Biocompatible materials and biocarriers have attracted great attention in biological wastewater treatment owing to their excellent performance in improving pollutant removal. Graphene-based material, a biocarrier candidate, with excellent adsorbability and conductivity was increasingly applied in anaerobic digestion due to its exceptional potential in the adsorption and electron transfer process. Nevertheless, the green approach for the formation of bio-graphene complexes and their mechanism in dye removal is limited. The aim of this study is to investigate and assess the performance of biological graphene hydrogel (BGH) formed by Shewanella putrefaciens CN32 on the removal of methyl orange (MO) and methylene blue (MB). The results showed that the formation of BGH is determined by the physicochemical characteristics of graphene oxide, including sheet size, oxidation degree, and interlayer distance. BGHs significantly increased the removal efficiency of dyes in comparison to non-graphene samples, with a 24-h removal rate of MO and MB reaching 92.9% and 91%, respectively. The synergetic mechanism of BGH on the enhanced removal rate of organic dye can be ascribed to GO's ability in accelerating extracellular electron transfer and stimulating biodegradation pathways relating to c-type cytochromes, including MtrA and MtrC. These findings provided an understanding of the relationship between graphene-based nanomaterials and Shewanella, which facilitated their future application in environmental biotechnology.
Collapse
Affiliation(s)
- Zilong Hua
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
17
|
Yao B, Liu M, Tang T, Hu X, Yang C, Chen Y. Enhancement of anaerobic digestion of ciprofloxacin wastewater by nano zero-valent iron immobilized onto biochar. BIORESOURCE TECHNOLOGY 2023; 385:129462. [PMID: 37429552 DOI: 10.1016/j.biortech.2023.129462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
The commonly used antibiotic ciprofloxacin (CIP) can significantly inhibit and interfere with the anaerobic digestion (AD) performance. This work was developed to explore the effectiveness and feasibility of nano iron-carbon composites to simultaneously enhance methane production and CIP removal during AD under CIP stress. The results demonstrated that when the nano-zero-valent iron (nZVI) content immobilized on biochar (BC) was 33% (nZVI/BC-33), the CIP degradation efficiency reached 87% and the methanogenesis reached 143 mL/g COD, both higher than Control, respectively. Reactive oxygen species analysis demonstrated that nZVI/BC-33 could effectively mitigate microorganisms subjected to the dual redox pressure from CIP and nZVI, and reduce a series of oxidative stress reactions. The microbial community depicted that nZVI/BC-33 enriched functional microorganisms related to CIP degradation and methane production and facilitated direct electron transfer processes. Nano iron-carbon composites can effectively alleviate the stress of CIP on AD and enhance methanogenesis.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chengyu Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Singh A, Chaurasia D, Khan N, Singh E, Chaturvedi Bhargava P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121552. [PMID: 37075921 DOI: 10.1016/j.envpol.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
19
|
Xiang Y, Li S, Rene ER, Lun X, Zhang P, Ma W. Detoxification of fluoroglucocorticoid by Acinetobacter pittii C3 via a novel defluorination pathway with hydrolysis, oxidation and reduction: Performance, genomic characteristics, and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131302. [PMID: 37031670 DOI: 10.1016/j.jhazmat.2023.131302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Biological dehalogenation degradation was an important detoxification method for the ecotoxicity and teratogenic toxicity of fluorocorticosteroids (FGCs). The functional strain Acinetobacter pittii C3 can effectively biodegrade and defluorinate to 1 mg/L Triamcinolone acetonide (TA), a representative FGCs, with 86 % and 79 % removal proportion in 168 h with the biodegradation and detoxification kinetic constant of 0.031/h and 0.016/h. The dehalogenation and degradation ability of strain C3 was related to its dehalogenation genomic characteristics, which manifested in the functional gene expression of dehalogenation, degradation, and toxicity tolerance. Three detoxification mechanisms were positively correlated with defluorination pathways through hydrolysis, oxidation, and reduction, which were regulated by the expression of the haloacid dehalogenase (HAD) gene (mupP, yrfG, and gph), oxygenase gene (dmpA and catA), and reductase gene (nrdAB and TgnAB). Hydrolysis defluorination was the most critical way for TA detoxification metabolism, which could rapidly generate low-toxicity metabolites and reduce toxic bioaccumulation due to hydrolytic dehalogenase-induced defluorination. The mechanism of hydrolytic defluorination was that the active pocket of hydrolytic dehalogenase was matched well with the spatial structure of TA under the adjustment of the hydrogen bond, and thus induced molecular recognition to promote the catalytic hydrolytic degradation of various amino acid residues. This work provided an effective bioremediation method and mechanism for improving defluorination and detoxification performance.
Collapse
Affiliation(s)
- Yayun Xiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Sinuo Li
- Beijing No. 80 High School, Beijing 100102, China
| | - Eldon R Rene
- IHE-Delft, Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611AX Delft, the Netherlands
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Tang T, Liu M, Du Y, Chen Y. Mechanism of action of single and mixed antibiotics during anaerobic digestion of swine wastewater: Microbial functional diversity and gene expression analysis. ENVIRONMENTAL RESEARCH 2023; 219:115119. [PMID: 36549483 DOI: 10.1016/j.envres.2022.115119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The mechanism by which antibiotics in swine wastewater affect anaerobic digestion (AD) remains unclear. Herein, we investigated how single and mixed antibiotics affect AD in swine wastewater. Both single and mixed antibiotics stimulated methane production at actual concentrations of 0.5-2 mg/L. Low-dose antibiotics (0.5 mg/L) exerted the most significant stimulatory effect on methane production, which increased by 211.63% (single) and 60.93% (mixed), respectively. However, an increased dose decreased the stimulatory effect on methane production. Overall, single antibiotics were more beneficial for methane production than mixed antibiotics since single antibiotics could promote the conversion of propionic and butyric acid, while mixed antibiotics inhibited the process. Microbial community analysis showed that single and mixed antibiotics could also lead to large changes in functional acidogens, ultimately leading to changes in methanogenic pathways.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
21
|
Tang T, Chen Y, Du Y, Yao B, Liu M. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129870. [PMID: 36063716 DOI: 10.1016/j.jhazmat.2022.129870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|