1
|
Lois M, Polo D, Pérez del Molino ML, Coira A, Aguilera A, Romalde JL. Monitoring the Emergence of SARS-CoV-2 VOCs in Wastewater and Clinical Samples-A One-Year Study in Santiago de Compostela (Spain). Viruses 2025; 17:489. [PMID: 40284932 PMCID: PMC12030845 DOI: 10.3390/v17040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Wastewater surveillance has become a valuable tool to monitor the emergence of SARS-CoV-2 variants of concern (VOCs) at the community level. In this study, we aimed to evaluate the presence of Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1617.2), and Omicron (B.1.1.529) VOCs in samples from the inlet of a wastewater treatment plant (WWTP) as well as from two different sewer interceptors (SI-1 and SI-2) from the urban sewage system in Santiago de Compostela (Galicia, NW of Spain) throughout 2021 and January 2022. For this purpose, detection and quantification of the four VOCs was performed using four duplex SARS-CoV-2 allelic discrimination RT-qPCR assays, targeting the S-gene. An N1 RT-qPCR gene assay was used as a reference for the presence of SARS-CoV-2 RNA in wastewater samples. All VOCs were detected in wastewater samples. Alpha, Beta, Delta, and Omicron VOCs were detected in 45.7%, 7.5%, 66.7%, and 72.7% of all samples, respectively. Alpha VOC was dominant during the first part of the study, whereas Delta and Omicron detection peaks were observed in May-June and December 2021, respectively. Some differences were observed among the results obtained for the two city sectors studied, which could be explained by the differences in the characteristics of the population between them. Wastewater-based epidemiology allowed us to track the early circulation and emergence of SARS-CoV-2 variants at a local level, and our results are temporally concordant with clinical data and epidemiological findings reported by the health authorities.
Collapse
Affiliation(s)
- Marta Lois
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| | - David Polo
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| | - María Luisa Pérez del Molino
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Amparo Coira
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Antonio Aguilera
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Jesús L. Romalde
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| |
Collapse
|
2
|
Adeola AO, Paramo L, Fuoco G, Naccache R. Emerging hazardous chemicals and biological pollutants in Canadian aquatic systems and remediation approaches: A comprehensive status report. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176267. [PMID: 39278485 DOI: 10.1016/j.scitotenv.2024.176267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Emerging contaminants can be natural or synthetic materials, as well as materials of a chemical, or biological origin; these materials are typically not controlled or monitored in the environment. Canada is home to nearly 7 % of the world's renewable water supply and a wide range of different kinds of water systems, including the Great Lake, rivers, canals, gulfs, and estuaries. Although the majority of these pollutants are present in trace amounts (μg/L - ng/L concentrations), several studies have reported their detrimental impact on both human health and the biota. In Canadian aquatic environments, concentrations of pharmaceuticals (as high as 115 μg/L), pesticides (as high as 1.95 μg/L), bioavailable heavy metals like dissolved mercury (as high as 135 ng/L), and hydrocarbon/crude oil spills (as high as 4.5 million liters) have been documented. Biological threats such as genetic materials of the contagious SARS-CoV-2 virus have been reported in the provinces of Québec, Ontario, Saskatchewan and Manitoba provinces, as well as in the Nunavut territory, with a need for more holistic research. These toxins and emerging pollutants are associated with nefarious short and long-term health effects, with the potential for bioaccumulation in the environment. Hence, this Canadian-focused report provides the footprints for water and environmental sustainability, in light of this emerging threat to the environment and society. Several remediation pathways/tools that have been explored by Canadian researchers, existing challenges and prospects are also discussed. The review concludes with preventive measures and strategies for managing the inventory of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Luis Paramo
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Gianluca Fuoco
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience Research, Concordia University, Montreal, QC H4B 1R6, Canada; Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
3
|
Radvák P, Rusňáková D, Sedláčková T, Böhmer M, Kaliňáková A, Kotvasová B, Sládeček T, Sitarčík J, Martiš J, Gašper J, Kunštek L, Prívara M, Budiš J, Krivjanská A, Turňa J, Szemes T. Evaluation of wastewater surveillance results for SARS-CoV-2 at the national scale in the Slovak Republic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176548. [PMID: 39332725 DOI: 10.1016/j.scitotenv.2024.176548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
As the COVID-19 transits to endemicity, the frequency of clinical testing and its utility for determining lineage prevalence has declined. This situation is not unique to Slovakia but reflects a global trend, as attention shifts from COVID-19 to other post-pandemic issues and emerging global health challenges. Nevertheless, the pandemic itself has spurred advancements in monitoring the epidemiological situation. At the beginning of the pandemic, genomic surveillance was carried out through sequencing of individual COVID-19 cases. Subsequently, many countries implemented wastewater surveillance to monitor the prevalence of SARS-CoV-2 variants in the community. In the present study, we collected and analysed 1715 virus-positive samples from 64 wastewater treatment plants across Slovakia, serving 69 % of the population connected to the wastewater treatment pipelines. Here, we show that wastewater sequencing is effective in detecting the emergence of new virus lineages. Additionally, we can assume that wastewater surveillance provides results that are approximately consistent when compared with clinical testing at both national and city levels, concurrently providing information on variant lineages which have not been detected in clinical cases due to reduced clinical testing. Our study demonstrates and concludes the value of wastewater-based surveillance strategies in the Slovakia, establishing it as an important and supportive tool for monitoring public health and serving as an early warning system in times when clinical testing is either declining or unavailable.
Collapse
Affiliation(s)
- Peter Radvák
- Comenius University Science Park, Bratislava, Slovak Republic; Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic.
| | - Diana Rusňáková
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic; Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Tatiana Sedláčková
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic
| | - Miroslav Böhmer
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic; Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Anna Kaliňáková
- Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Barbora Kotvasová
- Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Tomáš Sládeček
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic
| | - Jozef Sitarčík
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic; Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic
| | - Jozef Martiš
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic
| | - Ján Gašper
- Geneton Ltd., Bratislava, Slovak Republic; Department of Economics and Financial Models, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
| | - Lukáš Kunštek
- Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Matúš Prívara
- Public Health Authority of the Slovak Republic, 826 45 Bratislava, Slovak Republic
| | - Jaroslav Budiš
- Comenius University Science Park, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic; Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic
| | - Anna Krivjanská
- Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic; Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Ján Turňa
- Comenius University Science Park, Bratislava, Slovak Republic; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic; Slovak Centre of Scientific and Technical Information, Bratislava, Slovak Republic
| | - Tomáš Szemes
- Comenius University Science Park, Bratislava, Slovak Republic; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic; Geneton Ltd., Bratislava, Slovak Republic
| |
Collapse
|
4
|
Harrigan SP, Velásquez García HA, Abdia Y, Wilton J, Prystajecky N, Tyson J, Fjell C, Hoang L, Kwong JC, Mishra S, Wang L, Sander B, Janjua NZ, Sbihi H. The Clinical Severity of COVID-19 Variants of Concern: Retrospective Population-Based Analysis. JMIR Public Health Surveill 2024; 10:e45513. [PMID: 39190434 PMCID: PMC11387920 DOI: 10.2196/45513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND SARS-CoV-2 variants of concern (VOCs) emerged and rapidly replaced the original strain worldwide. The increased transmissibility of these new variants led to increases in infections, hospitalizations, and mortality. However, there is a scarcity of retrospective investigations examining the severity of all the main VOCs in presence of key public health measures and within various social determinants of health (SDOHs). OBJECTIVE This study aims to provide a retrospective assessment of the clinical severity of COVID-19 VOCs in the context of heterogenous SDOHs and vaccination rollout. METHODS We used a population-based retrospective cohort design with data from the British Columbia COVID-19 Cohort, a linked provincial surveillance platform. To assess the relative severity (hospitalizations, intensive care unit [ICU] admissions, and deaths) of Gamma, Delta, and Omicron infections during 2021 relative to Alpha, we used inverse probability treatment weighted Cox proportional hazard modeling. We also conducted a subanalysis among unvaccinated individuals, as assessed severity differed across VOCs and SDOHs. RESULTS We included 91,964 individuals infected with a SARS-CoV-2 VOC (Alpha: n=20,487, 22.28%; Gamma: n=15,223, 16.55%; Delta: n=49,161, 53.46%; and Omicron: n=7093, 7.71%). Delta was associated with the most severe disease in terms of hospitalization, ICU admissions, and deaths (hospitalization: adjusted hazard ratio [aHR] 2.00, 95% CI 1.92-2.08; ICU: aHR 2.05, 95% CI 1.91-2.20; death: aHR 3.70, 95% CI 3.23-4.25 relative to Alpha), followed generally by Gamma and then Omicron and Alpha. The relative severity by VOC remained similar in the unvaccinated individual subanalysis, although the proportion of individuals infected with Delta and Omicron who were hospitalized was 2 times higher in those unvaccinated than in those fully vaccinated. Regarding SDOHs, the proportion of hospitalized individuals was higher in areas with lower income across all VOCs, whereas among Alpha and Gamma infections, 2 VOCs that cocirculated, differential distributions of hospitalizations were found among racially minoritized groups. CONCLUSIONS Our study provides robust severity estimates for all VOCs during the COVID-19 pandemic in British Columbia, Canada. Relative to Alpha, we found Delta to be the most severe, followed by Gamma and Omicron. This study highlights the importance of targeted testing and sequencing to ensure timely detection and accurate estimation of severity in emerging variants. It further sheds light on the importance of vaccination coverage and SDOHs in the context of pandemic preparedness to support the prioritization of allocation for resource-constrained or minoritized groups.
Collapse
Affiliation(s)
- Sean P Harrigan
- BC Centre for Disease Control, Vancouver, BC, Canada
- University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | | | - Younathan Abdia
- University of British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - James Wilton
- BC Centre for Disease Control, Vancouver, BC, Canada
| | - Natalie Prystajecky
- BC Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John Tyson
- BC Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chris Fjell
- BC Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Linda Hoang
- BC Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey C Kwong
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
- Public Health Ontario, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Sharmistha Mishra
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Linwei Wang
- MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
| | - Beate Sander
- Institute for Clinical Evaluative Sciences, Toronto, ON, Canada
- Public Health Ontario, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Toronto Health Economics and Technology Assessment Collaborative, University Health Network, Toronto, ON, Canada
| | - Naveed Z Janjua
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Centre for Advancing Health Outcomes, St Paul's Hospital, Vancouver, BC, Canada
| | - Hind Sbihi
- BC Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Islam G, Gedge A, Ibrahim R, de Melo T, Lara-Jacobo L, Dlugosz T, Kirkwood AE, Simmons D, Desaulniers JP. The role of catchment population size, data normalization, and chronology of public health interventions on wastewater-based COVID-19 viral trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173272. [PMID: 38763190 DOI: 10.1016/j.scitotenv.2024.173272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic presented the most challenging global crisis in recent times. A pandemic caused by a novel pathogen such as SARS-CoV-2 necessitated the development of innovative techniques for the monitoring and surveillance of COVID-19 infections within communities. Wastewater surveillance (WWS) is recognized as a non-invasive, cost-effective, and valuable epidemiological tool to monitor the prevalence of COVID-19 infections in communities. Seven municipal wastewater sampling sites representing distinct sewershed communities were selected for the surveillance of the SARS-CoV-2 virus in Durham Region, Ontario, Canada over 8 months from March 2021 to October 2021. Viral RNA fragments of SARS-CoV-2 and the normalization target pepper mild mottle virus (PMMoV) were concentrated from wastewater influent using the PEG/NaCl superspeed centrifugation method and quantified using RT-qPCR. Strong significant correlations (Spearman's rs = 0.749 to 0.862, P < 0.001) were observed between SARS-CoV-2 gene copies/mL of wastewater and clinical cases reported in each delineated sewershed by onset date. Although raw wastewater offered higher correlation coefficients with clinical cases by onset date compared to PMMoV normalized data, only one site had a statistically significantly higher Spearman's correlation coefficient value for raw data than normalized data. Implementation of community stay-at-home orders and vaccinations over the course of the study period in 2021 were found to strongly correspond to decreasing SARS-CoV-2 wastewater trends in the wastewater treatment plants and upstream pumping stations.
Collapse
Affiliation(s)
- Golam Islam
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada.
| | - Ashley Gedge
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Reeta Ibrahim
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Tomas de Melo
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Linda Lara-Jacobo
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Thomas Dlugosz
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Andrea E Kirkwood
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Denina Simmons
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| | - Jean-Paul Desaulniers
- Faculty of Science, Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
6
|
Wang Y, Ni G, Tian W, Wang H, Li J, Thai P, Choi PM, Jackson G, Hu S, Yang B, Guo J. Wastewater tiling amplicon sequencing in sentinel sites reveals longitudinal dynamics of SARS-CoV-2 variants prevalence. WATER RESEARCH X 2024; 23:100224. [PMID: 38711798 PMCID: PMC11070618 DOI: 10.1016/j.wroa.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
The ongoing evolution of SARS-CoV-2 is a significant concern, especially with the decrease in clinical sequencing efforts, which impedes the ability of public health sectors to prepare for the emergence of new variants and potential COVID-19 outbreaks. Wastewater-based epidemiology (WBE) has been proposed as a surveillance program to detect and monitor the SARS-CoV-2 variants being transmitted in communities. However, research is limited in evaluating the effectiveness of wastewater collection at sentinel sites for monitoring disease prevalence and variant dynamics, especially in terms of inferring the epidemic patterns on a broader scale, such as at the state/province level. This study utilized a multiplexed tiling amplicon-based sequencing (ATOPlex) to track the longitudinal dynamics of variant of concern (VOC) in wastewater collected from municipalities in Queensland, Australia, spanning from 2020 to 2022. We demonstrated that wastewater epidemiology measured by ATOPlex exhibited a strong and consistent correlation with the number of daily confirmed cases. The VOC dynamics observed in wastewater closely aligned with the dynamic profile reported by clinical sequencing. Wastewater sequencing has the potential to provide early warning information for emerging variants. These findings suggest that WBE at sentinel sites, coupled with sensitive sequencing methods, provides a reliable and long-term disease surveillance strategy.
Collapse
Affiliation(s)
- Yu Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Gaofeng Ni
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Wei Tian
- MGI Australia Pty Ltd, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Haofei Wang
- MGI Australia Pty Ltd, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Phong Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Phil M. Choi
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Brisbane, Queensland, Australia
| | - Greg Jackson
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Brisbane, Queensland, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Bicheng Yang
- MGI Australia Pty Ltd, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Thakali O, Mercier É, Eid W, Wellman M, Brasset-Gorny J, Overton AK, Knapp JJ, Manuel D, Charles TC, Goodridge L, Arts EJ, Poon AFY, Brown RS, Graber TE, Delatolla R, DeGroot CT. Real-time evaluation of signal accuracy in wastewater surveillance of pathogens with high rates of mutation. Sci Rep 2024; 14:3728. [PMID: 38355869 PMCID: PMC10866965 DOI: 10.1038/s41598-024-54319-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus. In November 2021, the emergence of the Omicron variant of concern, harboring a C28311T mutation within the CDC N1 probe region, challenged the accuracy of the consensus between the RT-qPCR measurements of the N1 and N2 loci of SARS-CoV-2. In this study, we developed and applied a novel real-time dual loci quality assurance and control framework based on the relative difference between the loci measurements to the City of Ottawa dataset to identify a loss of sensitivity of the N1 assay in the period from July 10, 2022 to January 31, 2023. Further analysis via sequencing and allele-specific RT-qPCR revealed a high proportion of mutations C28312T and A28330G during the study period, both in the City of Ottawa and across the province. It is hypothesized that nucleotide mutations in the probe region, especially A28330G, led to inefficient annealing, resulting in reduction in sensitivity and accuracy of the N1 assay. This study highlights the importance of implementing quality assurance and control criteria to continually evaluate, in near real-time, the accuracy of the signal produced in wastewater surveillance applications that rely on detection of pathogens whose genomes undergo high rates of mutation.
Collapse
Affiliation(s)
- Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Martin Wellman
- The Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| | - Julia Brasset-Gorny
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Alyssa K Overton
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Jennifer J Knapp
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Douglas Manuel
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
- Department of Family Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON, K1N 6N5, Canada
- School of Epidemiology and Public Health, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON, K1N 6N5, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Lawrence Goodridge
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Eric J Arts
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - Art F Y Poon
- Department of Microbiology and Immunology, Western University, London, ON, N6A 3K7, Canada
| | - R Stephen Brown
- School of Environmental Studies and Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher T DeGroot
- Department of Mechanical and Materials Engineering, Western University, London, ON, N6A 5B9, Canada.
| |
Collapse
|
9
|
Champredon D, Becker D, Peterson SW, Mejia E, Hizon N, Schertzer A, Djebli M, Oloye FF, Xie Y, Asadi M, Cantin J, Pu X, Osunla CA, Brinkmann M, McPhedran KN, Servos MR, Giesy JP, Mangat C. Emergence and spread of SARS-CoV-2 variants of concern in Canada: a retrospective analysis from clinical and wastewater data. BMC Infect Dis 2024; 24:139. [PMID: 38287244 PMCID: PMC10823614 DOI: 10.1186/s12879-024-08997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The spread of SARS-CoV-2 has been studied at unprecedented levels worldwide. In jurisdictions where molecular analysis was performed on large scales, the emergence and competition of numerous SARS-CoV-2lineages have been observed in near real-time. Lineage identification, traditionally performed from clinical samples, can also be determined by sampling wastewater from sewersheds serving populations of interest. Variants of concern (VOCs) and SARS-CoV-2 lineages associated with increased transmissibility and/or severity are of particular interest. METHOD Here, we consider clinical and wastewater data sources to assess the emergence and spread of VOCs in Canada retrospectively. RESULTS We show that, overall, wastewater-based VOC identification provides similar insights to the surveillance based on clinical samples. Based on clinical data, we observed synchrony in VOC introduction as well as similar emergence speeds across most Canadian provinces despite the large geographical size of the country and differences in provincial public health measures. CONCLUSION In particular, it took approximately four months for VOC Alpha and Delta to contribute to half of the incidence. In contrast, VOC Omicron achieved the same contribution in less than one month. This study provides significant benchmarks to enhance planning for future VOCs, and to some extent for future pandemics caused by other pathogens, by quantifying the rate of SARS-CoV-2 VOCs invasion in Canada.
Collapse
Affiliation(s)
- David Champredon
- Public Health Agency of Canada, National Microbiology Laboratory, Public Health Risk Sciences Division, Guelph, ON, Canada.
| | - Devan Becker
- Public Health Agency of Canada, National Microbiology Laboratory, Public Health Risk Sciences Division, Guelph, ON, Canada
| | - Shelley W Peterson
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Edgard Mejia
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Nikho Hizon
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| | - Andrea Schertzer
- Public Health Agency of Canada, Centre for Immunization and Respiratory Infectious Diseases, Ottawa, ON, Canada
| | - Mohamed Djebli
- Public Health Agency of Canada, Centre for Immunization and Respiratory Infectious Diseases, Ottawa, ON, Canada
| | - Femi F Oloye
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, United States.
| | - Yuwei Xie
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xia Pu
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Charles A Osunla
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Markus Brinkmann
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - John P Giesy
- Toxicology Program, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Environmental Sciences, Baylor University, Waco, TX, USA.
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Chand Mangat
- Public Health Agency of Canada, National Microbiology Laboratory, One Health Division, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
11
|
Kumar M, Joshi M, Prajapati B, Sirikanchana K, Mongkolsuk S, Kumar R, Gallage TP, Joshi C. Early warning of statewide COVID-19 Omicron wave by sentineled urbanized sewer network monitoring using digital PCR in a province capital city, of Gujarat, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167060. [PMID: 37709091 DOI: 10.1016/j.scitotenv.2023.167060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Wastewater-based epidemiology (WBE) has been implemented globally. However, there remains confusion about the number and frequency of samples to be collected, as well as which types of treatment systems can provide reliable specific details about the virus prevalence in specific areas or communities, enabling prompt management and intervention measures. More research is necessary to fully comprehend the possibility of deploying sentinel locations in sewer networks in larger geographic areas. The present study introduces the first report on wastewater-based surveillance in Gandhinagar City using digital PCR (d-PCR) as a SARS-Cov-2 quantification tool, which describes the viral load from five pumping stations in Gandhinagar from October 2021 to March 2022. Raw wastewater samples (n = 119) were received and analyzed weekly to detect SARS-CoV-2 RNA, 109 of which were positive for N1 or N2 genes. The monthly variation analysis in viral genome copies depicted the highest concentrations in January 2022 and February 2022 (p < 0.05; Wilcoxon signed rank test) coincided with the Omicron wave, which contributed mainly from Vavol and Jaspur pumping stations. Cross-correlation analysis indicated that WBE from five stations in Gandhinagar, i.e., capital city sewer networks, provided two-week lead times to the citywide and statewide active cases (time-series cross-correlation function [CCF]; 0.666 and 0.648, respectively), mainly from individual contributions of the urbanized Kudasan and Vavol stations (CCF; 0.729 and 0.647, respectively). These findings suggest that sewer pumping stations in urbanized neighborhoods can be used as sentinel sites for statewide clinical surveillance and that WBE surveillance using digital PCR can be an efficient monitoring and management tool.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Technologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Bhumika Prajapati
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India; Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Tharindu Pollwatta Gallage
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| |
Collapse
|
12
|
Ding J, Xu X, Deng Y, Zheng X, Zhang T. Circulation of SARS-CoV-2 Omicron sub-lineages revealed by multiplex genotyping RT-qPCR assays for sewage surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166300. [PMID: 37591390 DOI: 10.1016/j.scitotenv.2023.166300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Sewage surveillance has proven to be an essential complementary tool to clinical diagnosis in combating the COVID-19 pandemic by tracking the spread of the SARS-CoV-2 virus and evaluating infection levels in populations. With the striking spreading and continuous evolution of SARS-CoV-2 Omicron VOC that characterized with higher transmissibility and potential immune evasion, there is an urgent need for the rapid surveillance of this prevalent strain and its sub-lineages in sewage. In this study, based on three multiplex allele-specific (AS) RT-qPCR assays, we established a rapid and high-throughput detection workflow for the simultaneous discrimination of Omicron sub-lineages BA.2.2, BA.2.12.1, BA.4 and BA.5 (hereafter referred to as BA.4/BA.5) to track their community circulation in Hong Kong. All primer-probe sets in the multiplex assays could correctly discriminate and quantitate their target genotypes with high sensitivity and specificity, even when multiple variants co-existed in the sewage samples. Using the established multiplex assays, the trends of SARS-CoV-2 total viral load and variant dynamics in influent samples collected from 11 wastewater treatment plants (WWTPs) during June 2022 and September 2022, aligned with the clinical data, successfully unveiling the swift emergence and predominance of Omicron BA.4/BA.5 in Hong Kong. The study highlights the feasibility and applicability of multiplex RT-qPCR assays for monitoring epidemic trends and tracking variant displacement dynamics in sewage samples, providing a more rapid, high-throughput and cost-effective alternative to enhance the current sewage surveillance system.
Collapse
Affiliation(s)
- Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
13
|
Hasing ME, Lee BE, Gao T, Li Q, Qiu Y, Ellehoj E, Graber TE, Fuzzen M, Servos M, Landgraff C, Delatolla R, Tipples G, Zelyas N, Hinshaw D, Maal-Bared R, Sikora C, Parkins M, Hubert CRJ, Frankowski K, Hrudey SE, Pang XL. Wastewater surveillance monitoring of SARS-CoV-2 variants of concern and dynamics of transmission and community burden of COVID-19. Emerg Microbes Infect 2023; 12:2233638. [PMID: 37409382 PMCID: PMC10408568 DOI: 10.1080/22221751.2023.2233638] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Wastewater-based surveillance is a valuable approach for monitoring COVID-19 at community level. Monitoring SARS-CoV-2 variants of concern (VOC) in wastewater has become increasingly relevant when clinical testing capacity and case-based surveillance are limited. In this study, we ascertained the turnover of six VOC in Alberta wastewater from May 2020 to May 2022. Wastewater samples from nine wastewater treatment plants across Alberta were analysed using VOC-specific RT-qPCR assays. The performance of the RT-qPCR assays in identifying VOC in wastewater was evaluated against next generation sequencing. The relative abundance of each VOC in wastewater was compared to positivity rate in COVID-19 testing. VOC-specific RT-qPCR assays performed comparatively well against next generation sequencing; concordance rates ranged from 89% to 98% for detection of Alpha, Beta, Gamma, Omicron BA.1 and Omicron BA.2, with a slightly lower rate of 85% for Delta (p < 0.01). Elevated relative abundance of Alpha, Delta, Omicron BA.1 and BA.2 were each associated with increased COVID-19 positivity rate. Alpha, Delta and Omicron BA.2 reached 90% relative abundance in wastewater within 80, 111 and 62 days after their initial detection, respectively. Omicron BA.1 increased more rapidly, reaching a 90% relative abundance in wastewater after 35 days. Our results from VOC surveillance in wastewater correspond with clinical observations that Omicron is the VOC with highest disease burden over the shortest period in Alberta to date. The findings suggest that changes in relative abundance of a VOC in wastewater can be used as a supplementary indicator to track and perhaps predict COVID-19 burden in a population.
Collapse
Affiliation(s)
- Maria E. Hasing
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bonita E. Lee
- Department of Paediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tiejun Gao
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Qiaozhi Li
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yuanyuan Qiu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Erik Ellehoj
- Ellehoj Redmond Consulting, Edmonton, Alberta, Canada
| | - Tyson E. Graber
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Meghan Fuzzen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chrystal Landgraff
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Graham Tipples
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Nathan Zelyas
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - Deena Hinshaw
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Christopher Sikora
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoli L. Pang
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Ram JL, Shuster W, Gable L, Turner CL, Hartrick J, Vasquez AA, West NW, Bahmani A, David RE. Wastewater Monitoring for Infectious Disease: Intentional Relationships between Academia, the Private Sector, and Local Health Departments for Public Health Preparedness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6651. [PMID: 37681792 PMCID: PMC10487196 DOI: 10.3390/ijerph20176651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023]
Abstract
The public health emergency caused by the COVID-19 pandemic stimulated stakeholders from diverse disciplines and institutions to establish new collaborations to produce informed public health responses to the disease. Wastewater-based epidemiology for COVID-19 grew quickly during the pandemic and required the rapid implementation of such collaborations. The objective of this article is to describe the challenges and results of new relationships developed in Detroit, MI, USA among a medical school and an engineering college at an academic institution (Wayne State University), the local health department (Detroit Health Department), and an environmental services company (LimnoTech) to utilize markers of the COVID-19 virus, SARS-CoV-2, in wastewater for the goal of managing COVID-19 outbreaks. Our collaborative team resolved questions related to sewershed selection, communication of results, and public health responses and addressed technical challenges that included ground-truthing the sewer maps, overcoming supply chain issues, improving the speed and sensitivity of measurements, and training new personnel to deal with a new disease under pandemic conditions. Recognition of our complementary roles and clear communication among the partners enabled city-wide wastewater data to inform public health responses within a few months of the availability of funding in 2020, and to make improvements in sensitivity and understanding to be made as the pandemic progressed and evolved. As a result, the outbreaks of COVID-19 in Detroit in fall and winter 2021-2022 (corresponding to Delta and Omicron variant outbreaks) were tracked in 20 sewersheds. Data comparing community- and hospital-associated sewersheds indicate a one- to two-week advance warning in the community of subsequent peaks in viral markers in hospital sewersheds. The new institutional relationships impelled by the pandemic provide a good basis for continuing collaborations to utilize wastewater-based human and pathogen data for improving the public health in the future.
Collapse
Affiliation(s)
- Jeffrey L. Ram
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - William Shuster
- College of Engineering, Wayne State University, Detroit, MI 48202, USA;
| | - Lance Gable
- Law School, Wayne State University, Detroit, MI 48202, USA
| | | | | | - Adrian A. Vasquez
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Nicholas W. West
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Azadeh Bahmani
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.A.V.)
| | - Randy E. David
- Detroit Health Department, Detroit, MI 48201, USA
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Oloye FF, Xie Y, Challis JK, Femi-Oloye OP, Brinkmann M, McPhedran KN, Jones PD, Servos MR, Giesy JP. Understanding common population markers for SARS-CoV-2 RNA normalization in wastewater - A review. CHEMOSPHERE 2023; 333:138682. [PMID: 37201600 PMCID: PMC10186006 DOI: 10.1016/j.chemosphere.2023.138682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
Wastewater monitoring and epidemiology have seen renewed interest during the recent COVID-19 pandemic. As a result, there is an increasing need to normalize wastewater-derived viral loads in local populations. Chemical tracers, both exogenous and endogenous compounds, have proven to be more stable and reliable for normalization than biological indicators. However, differing instrumentation and extraction methods can make it difficult to compare results. This review examines current extraction and quantification methods for ten common population indicators: creatinine, coprostanol, nicotine, cotinine, sucralose, acesulfame, androstenedione 5-hydroindoleacetic acid (5-HIAA), caffeine, and 1,7-dimethyluric acid. Some wastewater parameters such as ammonia, total nitrogen, total phosphorus, and daily flowrate were also evaluated. The analytical methods included direct injection, dilute and shoot, liquid/liquid, and solid phase extraction (SPE). Creatine, acesulfame, nicotine, 5-HIAA and androstenedione have been analysed by direct injection into LC-MS; however, most authors prefer to include SPE steps to avoid matrix effects. Both LC-MS and GC-MS have been successfully used to quantify coprostanol in wastewater, and the other selected indicators have been quantified successfully with LC-MS. Acidification to stabilize the sample before freezing to maintain the integrity of samples has been reported to be beneficial. However, there are arguments both for and against working at acidic pHs. Wastewater parameters mentioned earlier are quick and easy to quantify, but the data does not always represent the human population effectively. A preference for population indicators originating solely from humans is apparent. This review summarises methods employed for chemical indicators in wastewater, provides a basis for choosing an appropriate extraction and analysis method, and highlights the utility of accurate chemical tracer data for wastewater-based epidemiology.
Collapse
Affiliation(s)
- Femi F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N McPhedran
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada; Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Asadi M, Oloye FF, Xie Y, Cantin J, Challis JK, McPhedran KN, Yusuf W, Champredon D, Xia P, De Lange C, El-Baroudy S, Servos MR, Jones PD, Giesy JP, Brinkmann M. A wastewater-based risk index for SARS-CoV-2 infections among three cities on the Canadian Prairie. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162800. [PMID: 36914129 PMCID: PMC10008033 DOI: 10.1016/j.scitotenv.2023.162800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/01/2023]
Abstract
Wastewater surveillance (WWS) is useful to better understand the spreading of coronavirus disease 2019 (COVID-19) in communities, which can help design and implement suitable mitigation measures. The main objective of this study was to develop the Wastewater Viral Load Risk Index (WWVLRI) for three Saskatchewan cities to offer a simple metric to interpret WWS. The index was developed by considering relationships between reproduction number, clinical data, daily per capita concentrations of virus particles in wastewater, and weekly viral load change rate. Trends of daily per capita concentrations of SARS-CoV-2 in wastewater for Saskatoon, Prince Albert, and North Battleford were similar during the pandemic, suggesting that per capita viral load can be useful to quantitatively compare wastewater signals among cities and develop an effective and comprehensible WWVLRI. The effective reproduction number (Rt) and the daily per capita efficiency adjusted viral load thresholds of 85 × 106 and 200 × 106 N2 gene counts (gc)/population day (pd) were determined. These values with rates of change were used to categorize the potential for COVID-19 outbreaks and subsequent declines. The weekly average was considered 'low risk' when the per capita viral load was 85 × 106 N2 gc/pd. A 'medium risk' occurs when the per capita copies were between 85 × 106 and 200 × 106 N2 gc/pd. with a rate of change <100 %. The start of an outbreak is indicated by a 'medium-high' risk classification when the week-over-week rate of change was >100 %, and the absolute magnitude of concentrations of viral particles was >85 × 106 N2 gc/pd. Lastly, a 'high risk' occurs when the viral load exceeds 200 × 106 N2 gc/pd. This methodology provides a valuable resource for decision-makers and health authorities, specifically given the limitation of COVID-19 surveillance based on clinical data.
Collapse
Affiliation(s)
- Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Femi F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Kerry N McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Warsame Yusuf
- Public Health Risk Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - David Champredon
- Public Health Risk Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Pu Xia
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chantel De Lange
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Seba El-Baroudy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
17
|
Tiwari A, Adhikari S, Zhang S, Solomon TB, Lipponen A, Islam MA, Thakali O, Sangkham S, Shaheen MNF, Jiang G, Haramoto E, Mazumder P, Malla B, Kumar M, Pitkänen T, Sherchan SP. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. WATER 2023; 15:1018. [DOI: 10.3390/w15061018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | | | - Shuxin Zhang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mohamed N. F. Shaheen
- Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Giza 2310, Egypt
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
18
|
Sangsanont J, Rattanakul S, Makkaew P, Precha N, Rukthanapitak P, Sresung M, Siri Y, Kitajima M, Takeda T, Haramoto E, Puenpa J, Wanlapakorn N, Poovorawan Y, Mongkolsuk S, Sirikanchana K. Wastewater monitoring in tourist cities as potential sentinel sites for near real-time dynamics of imported SARS-CoV-2 variants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160317. [PMID: 36436629 PMCID: PMC9691270 DOI: 10.1016/j.scitotenv.2022.160317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology (WBE) complements the clinical surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants' distribution in populations. Many developed nations have established national and regional WBE systems; however, governance and budget constraints could be obstacles for low- and middle-income countries. An urgent need thus exists to identify hotspots to serve as sentinel sites for WBE. We hypothesized that representative wastewater treatment plants (WWTPs) in two international gateway cities, Bangkok and Phuket, Thailand, could be sentineled for SARS-CoV-2 and its variants to reflect the clinical distribution patterns at city level and serve as early indicators of new variants entering the country. Municipal wastewater samples (n = 132) were collected from eight representative municipal WWTPs in Bangkok and Phuket during 19 sampling events from October 2021 to March 2022, which were tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the US CDC N1 and N2 multiplex and variant (Alpha, Delta, and Omicron BA.1 and BA.2) singleplex assays. The variant detection ratios from Bangkok and Phuket followed similar trends to the national clinical testing data, and each variant's viral loads agreed with the daily new cases (3-d moving average). Omicron BA.1 was detected in Phuket wastewater prior to Bangkok, possibly due to Phuket's WWTPs serving tourist communities. We found that the Omicron BA.1 and BA.2 viral loads predominantly drove the SARS-CoV-2 resurgence. We also noted a shifting pattern in the Bangkok WBE from a 22-d early warning in early 2021 to a near real-time pattern in late 2021. The potential application of tourist hotspots for WBE to indicate the arrival of new variants and re-emerging or unprecedented infectious agents could support tourism-dependent economies by complementing the reduced clinical regulations while maintaining public health protection via wastewater surveillance.
Collapse
Affiliation(s)
- Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Pratchaya Rukthanapitak
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, 113-0033, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand.
| |
Collapse
|
19
|
Gagliano E, Biondi D, Roccaro P. Wastewater-based epidemiology approach: The learning lessons from COVID-19 pandemic and the development of novel guidelines for future pandemics. CHEMOSPHERE 2023; 313:137361. [PMID: 36427570 PMCID: PMC9678975 DOI: 10.1016/j.chemosphere.2022.137361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology (WBE) provides a comprehensive real-time framework of population attitude and health status. This approach is attracting the interest of medical community and health authorities to monitor the prevalence of a virus (such as the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) among a community. Indeed, WBE is currently fine-tuning as environmental surveillance tool for coronavirus disease 2019 (COVID-19) pandemic. After a bibliometric analysis conducted to discover the research trends in WBE field, this work aimed to side-by-side compare the conventional method based on clinical testing with WBE approach. Furthermore, novel guidelines were developed to apply the WBE approach to a pandemic. The growing interest on WBE approach for COVID-19 pandemic is demonstrated by looking at the sharp increase in scientific papers published in the last years and at the ongoing studies on viral quantification methods and analytical procedures. The side-by-side comparison highlighted the ability of WBE to identify the hot-spot areas faster than the conventional approach, reducing the costs (e.g., rational use of available resources) and the gatherings at medical centers. Contrary to clinical testing, WBE has the surveillance capacity for preventing the virus resurgence, including asymptomatic contribution, and ensuring the preservation of medical staff health by avoiding the exposure to the virus infection during clinical testing. As extensively reported, the time in collecting epidemiological data is crucial for establishing the prevention and mitigation measures that are essential for curbing a pandemic. The developed guidelines can help to build a WBE system useful to control any future pandemic.
Collapse
Affiliation(s)
- Erica Gagliano
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy; Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa, Italy
| | - Deborah Biondi
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| |
Collapse
|
20
|
Galani A, Markou A, Dimitrakopoulos L, Kontou A, Kostakis M, Kapes V, Diamantopoulos MA, Adamopoulos PG, Avgeris M, Lianidou E, Scorilas A, Paraskevis D, Tsiodras S, Dimopoulos MA, Thomaidis N. Delta SARS-CoV-2 variant is entirely substituted by the omicron variant during the fifth COVID-19 wave in Attica region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159062. [PMID: 36181801 PMCID: PMC9519360 DOI: 10.1016/j.scitotenv.2022.159062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 05/28/2023]
Abstract
Wastewater analysis is the most attractive alternative way for the quantification and variant profiling of SARS-CoV-2. Infection dynamics can be monitored by RT-qPCR assays while NGS can provide evidence for the presence of existing or new emerging SARS-CoV-2 variants. Herein, apart from the infection dynamic in Attica since June 1st, 2021, the monitoring of 9 mutations of the omicron and 4 mutations of the delta SARS-CoV-2 variants, utilizing both novel Nested-Seq and RT-PCR, is reported and the substitution of the delta variant (B.1.617.2) by the omicron variant (B.1.1.529) in Attica, Greece within approximately one month is highlighted. The key difference between the two methodologies is discovery power. RT-PCR can only detect known sequences cost-effectively, while NGS is a hypothesis-free approach that does not require prior knowledge to detect novel genes. Overall, the potential of wastewater genomic surveillance for the early discovery and monitoring of variants important for disease management at the community level is underlined. This is the first study, reporting the SARS-CoV-2 infection dynamic for an extended time period and the first attempt to monitor two of the most severe variants with two different methodologies in Greece.
Collapse
Affiliation(s)
- Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Lampros Dimitrakopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Aikaterini Kontou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Vasileios Kapes
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, "P. & A. Kyriakou" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, School of Medicine, University General Hospital Attikon, National and Kapodistrian University of Athens, Greece
| | | | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece.
| |
Collapse
|
21
|
Jain N, Hamilton D, Mital S, Ilias A, Brinkmann M, McPhedran K. Long-term passive wastewater surveillance of SARS-CoV-2 for seven university dormitories in comparison to municipal surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158421. [PMID: 36058330 PMCID: PMC9433341 DOI: 10.1016/j.scitotenv.2022.158421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 05/28/2023]
Abstract
Wastewater-based surveillance (WBS) has been an effective tool for monitoring and understanding potential SARS-CoV-2 transmission across small and large-scale communities. In this study at the University of Saskatchewan, the assessment of SARS-CoV-2 was done over eight months during the 2021-2022 academic year. Wastewater samples were collected using passive samplers that were deployed in domestic sewer lines near adjacent campus residences and extracted for viral RNA, followed by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR). The results showed similar trends for SARS-CoV-2 detection frequencies and viral loads across university residences, the whole campus, and from related WBS at Saskatoon Wastewater Treatment Plant. The maximum daily detection frequency for seven dormitories considered was about 75 %, while maximum daily case numbers for the residences and campus-wide were about 11 and 75 people, respectively. In addition, self-reported rates of infection on campus peaked during similar time frames as increases in viral load were detected at the Saskatoon wastewater treatment plant. These similarities indicate the usefulness and cost-effectiveness of monitoring the spread of COVID-19 in small-scale communities using WBS.
Collapse
Affiliation(s)
- N Jain
- Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - D Hamilton
- Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - S Mital
- Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - A Ilias
- Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - M Brinkmann
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Centre for Hydrology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - K McPhedran
- Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
22
|
Kopsidas I, Karagiannidou S, Kostaki EG, Kousi D, Douka E, Sfikakis PP, Moustakidis S, Kokkotis C, Tsaopoulos D, Tseti I, Zaoutis T, Paraskevis D. Global Distribution, Dispersal Patterns, and Trend of Several Omicron Subvariants of SARS-CoV-2 across the Globe. Trop Med Infect Dis 2022; 7:373. [PMID: 36422924 PMCID: PMC9698960 DOI: 10.3390/tropicalmed7110373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
Our study aims to describe the global distribution and dispersal patterns of the SARS-CoV-2 Omicron subvariants. Genomic surveillance data were extracted from the CoV-Spectrum platform, searching for BA.1*, BA.2*, BA.3*, BA.4*, and BA.5* variants by geographic region. BA.1* increased in November 2021 in South Africa, with a similar increase across all continents in early December 2021. BA.1* did not reach 100% dominance in all continents. The spread of BA.2*, first described in South Africa, differed greatly by geographic region, in contrast to BA.1*, which followed a similar global expansion, firstly occurring in Asia and subsequently in Africa, Europe, Oceania, and North and South America. BA.4* and BA.5* followed a different pattern, where BA.4* reached high proportions (maximum 60%) only in Africa. BA.5* is currently, by Mid-August 2022, the dominant strain, reaching almost 100% across Europe, which is the first continent aside from Africa to show increasing proportions, and Asia, the Americas, and Oceania are following. The emergence of new variants depends mostly on their selective advantage, translated as enhanced transmissibility and ability to invade people with existing immunity. Describing these patterns is useful for a better understanding of the epidemiology of the VOCs' transmission and for generating hypotheses about the future of emerging variants.
Collapse
Affiliation(s)
- Ioannis Kopsidas
- Center for Clinical Epidemiology and Outcomes Research (CLEO), 15451 Athens, Greece
| | | | - Evangelia Georgia Kostaki
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitra Kousi
- Center for Clinical Epidemiology and Outcomes Research (CLEO), 15451 Athens, Greece
| | - Eirini Douka
- National Public Health Organisation (NPHO), 15123 Athens, Greece
| | - Petros P. Sfikakis
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | - Dimitrios Tsaopoulos
- Center for Research and Technology Hellas, Institute for Bio-Economy & Agri-Technology, 38333 Volos, Greece
| | | | - Theoklis Zaoutis
- National Public Health Organisation (NPHO), 15123 Athens, Greece
| | - Dimitrios Paraskevis
- National Public Health Organisation (NPHO), 15123 Athens, Greece
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
23
|
Wartell BA, Proano C, Bakalian L, Kaya D, Croft K, McCreary M, Lichtenstein N, Miske V, Arcellana P, Boyer J, Benschoten IV, Anderson M, Crabb A, Gilson S, Gourley A, Wheeler T, Trest B, Bowman G, Kjellerup BV. Implementing wastewater surveillance for SARS-CoV-2 on a university campus: Lessons learned. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10807. [PMID: 36372781 PMCID: PMC9827968 DOI: 10.1002/wer.10807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Wastewater surveillance, also known as wastewater-based epidemiology (WBE), has been successfully used to detect SARS-CoV-2 and other viruses in sewage in many locations in the United States and globally. This includes implementation of the surveillance on college and university campuses. A two-phase study was conducted during the 2020-2021 academic year to test the feasibility of a WBE system on campus and to supplement the clinical COVID-19 testing performed for the student, staff, and faculty body. The primary objective during the Fall 2020 semester was to monitor a large portion of the on-campus population and to obtain an understanding of the spreading of the SARS-CoV-2 virus. The Spring 2021 objective was focused on selected residence halls and groups of residents on campus, as this was more efficient and relevant for an effective follow-up response. Logistical problems and planning oversights initially occurred but were corrected with improved communication and experience. Many lessons were learned, including effective mapping, site planning, communication, personnel organization, and equipment management, and obtained along the way, thereby paving an opportune guide for future planning efforts. PRACTITIONER POINTS: WBE was successful in the detection of many SARS-CoV-2 variants incl. Alpha, Beta, Gamma, Delta, Lambda, Mu, and Omicron. Careful planning and contingencies were essential for a successful implementation of a SARS-CoV-2 monitoring program. A surveillance program may be important for detection and monitoring of other public health relevant targets in wastewater incl. bacteria, viruses, fungi and viruses. Diverse lessons were learned incl. effective mapping, site planning, communication, personnel organization, and equipment management, thereby providing a guide for future planning efforts.
Collapse
Affiliation(s)
- Brian A. Wartell
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Camila Proano
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Lena Bakalian
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Devrim Kaya
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Kristen Croft
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Michael McCreary
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Naomi Lichtenstein
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Victoria Miske
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Patricia Arcellana
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Jessica Boyer
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Isabelle Van Benschoten
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Marya Anderson
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Andrea Crabb
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Susan Gilson
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Anthony Gourley
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Tim Wheeler
- Department of Residential FacilitiesUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Brian Trest
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Glynnis Bowman
- Facilities ManagementUniversity of Maryland College ParkCollege ParkMarylandUSA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental EngineeringUniversity of Maryland College ParkCollege ParkMarylandUSA
| |
Collapse
|
24
|
Johnson R, Mangwana N, Sharma JR, Muller CJF, Malemela K, Mashau F, Dias S, Ramharack P, Kinnear C, Glanzmann B, Viraragavin A, Louw J, Surujlal-Naicker S, Nkambule S, Webster C, Mdhluli M, Gray G, Mathee A, Preiser W, Vorster A, Dalvie S, Street R. Delineating the spread and prevalence of SARS-CoV-2 Omicron sub-lineages (BA.1- BA.5) and Deltacron using wastewater in the Western Cape, South Africa. J Infect Dis 2022; 226:1418-1427. [PMID: 36017801 PMCID: PMC9574669 DOI: 10.1093/infdis/jiac356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
This study was one of the first to detect Omicron sublineages BA.4 and BA.5 in wastewater from South Africa. Spearman rank correlation analysis confirmed a strong positive correlation between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA in wastewater samples and clinical cases (r = 0.7749, P < .0001). SARS-CoV-2 viral load detected in wastewater, resulting from the Delta-driven third wave, was significantly higher than during the Omicron-driven fourth wave. Whole-genome sequencing confirmed presence of Omicron lineage defining mutations in wastewater with the first occurrence reported 23 November 2021 (BA.1 predominant). The variant spread rapidly, with prevalence of Omicron-positive wastewater samples rising to >80% by 10 January 2022 with BA.2 as the predominant sublineage by 10 March 2022, whilst on 18 April 2022 BA.4 and BA.5 were detected in selected wastewater sites. These findings demonstrate the value of wastewater-based epidemiology to monitor the spatiotemporal spread and potential origin of new Omicron sublineages.
Collapse
Affiliation(s)
- Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa.,Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Noluxabiso Mangwana
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa
| | - Jyoti R Sharma
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa.,Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa.,Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Kholofelo Malemela
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa
| | - Funanani Mashau
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa.,Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Craig Kinnear
- Genomics Centre, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa.,DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brigitte Glanzmann
- Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Amsha Viraragavin
- Genomics Centre, South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, South Africa
| | - Swastika Surujlal-Naicker
- Scientific Services, Water and Sanitation Department, City of Cape Town Metropolitan Municipality, Cape Town, South Africa
| | - Sizwe Nkambule
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Durban, South Africa
| | - Candice Webster
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), JohannesburgSouth Africa
| | - Mongezi Mdhluli
- Chief Research Operations Office, South African Medical Research Council, Tygerberg 7050, South Africa
| | - Glenda Gray
- Office of the President, South African Medical Research Council, Tygerberg 7050, South Africa
| | - Angela Mathee
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), JohannesburgSouth Africa
| | - Wolfgang Preiser
- Division of Medical Virology at NHLS Tygerberg Hospital and Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alvera Vorster
- Central Analytical Facilities, Stellenbosch University, South Africa
| | - Shareefa Dalvie
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa.,SAMRC, Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Renee Street
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), Durban, South Africa
| |
Collapse
|