1
|
Zhang S, Jiang X, Chen Y, Luo C, Wang L, Lou Z, Xu J, Xu X. Temperature-induced atomic intrinsic sites evolution during waste dyeing sludge into the wealthy iron-based catalyst to sustainable decontamination. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138491. [PMID: 40344837 DOI: 10.1016/j.jhazmat.2025.138491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
Although the worldwide spike in the production of dyeing sludge offers a tantalizing resource to be harnessed, effective waste-to-wealth strategies remain elusive due to its intricate toxic organic matter and metallic elements. Here, we developed a temperature-rebuilding strategy to transform discarded dyeing sludge into an iron-based catalyst with favorable charge transfer for the highly efficient and sustainable Fenton-like catalytic degradation of ppm-level contaminants in wash-tank water. Using X-ray diffraction, X-ray photoelectron spectroscopy, and synchrotron X-ray absorption spectroscopy, we could precisely track and identify the gradual formation of inherent sites (i.e., Fe2(SO4)3, FeOOH, and Fe1-xS) towards active sites (i.e., FeS and Fe0) at crystal, surface, and atomic levels. Benefiting from the reconstruction of iron sites, BC-800 effectively decomposed peroxymonosulfate into multiple radicals and nonradicals through electronic structure modulation, which enabled nearly 100 % degradation and over 60 % mineralization rate of common aromatic compounds within 30 min via ring-opening and dechlorination/substitution pathways. More delightedly, the BC-800 maintained excellent Fenton-like activity across a broad pH or multiple anions coexisted, and its device allowed extended parachlorophenol degradation for over 1 d. This work proposes a feasible "waste control by waste" approach to the reutilization of dyeing sludge, encouraging a potential solution for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Shengkun Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xunheng Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yue Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenghui Luo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lixiao Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zimo Lou
- College of Environment, Zhejiang University of Technology, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinhua Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Lu D, Song Y, Ge H, Peng H, Li H. Combination of magnetite and sodium percarbonate to enhance acetate-enriched short-chain fatty acids production during sludge anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175854. [PMID: 39209173 DOI: 10.1016/j.scitotenv.2024.175854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Large amounts of waste activated sludge are generated daily worldwide, posing significant environmental challenges. Anaerobic fermentation is a promising method for sludge disposal, but it has two technical bottlenecks: the availability of short-chain fatty acids (SCFAs)-producing substrates and SCFAs consumption by methanogenesis. This study proposes a pretreatment strategy combining sodium percarbonate (SPC) and magnetite (Fe3O4) to address these issues. Under optimized conditions (20 mg Fe3O4/g TSS and 15 mg SPC/g TSS), SCFAs production increased to 3244.10 ± 216.31 mg COD/L, about 3.06 times the control (1057.29 ± 35.06 mg COD/L) and surpassing reported treatments. The combined pretreatment enhanced the disruption of extracellular polymeric substances, increased the release of biodegradable matters, improved acidogenesis enzyme activities, and inhibited methanogenesis. Additionally, it increased NH4+-N release in favor of the recovery of phosphorus from sludge residual. This study demonstrates an efficient pretreatment for high SCFAs production and resource recovery from WAS.
Collapse
Affiliation(s)
- Denglong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yang Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Huanying Ge
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Hongjia Peng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
3
|
Wang X, Yu Q, Gong Y, Zhang Y. Enhancing the production of reactive oxygen species in the rhizosphere to promote contaminants degradation in sediments by electrically strengthening microbial extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135644. [PMID: 39191018 DOI: 10.1016/j.jhazmat.2024.135644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The production of reactive oxygen species (ROS) in the rhizosphere is limited by the low extracellular electron transfer capacity of indigenous microorganisms. In the present study, electrical stimulation was used to promote the generation of rhizospheric ROS by accelerating extracellular electron transfer. The result showed that •OH concentrations in the electrically stimulated group (ES group) exceeded the control group by 15.76 %. Accordingly, the removal rate of the target pollutant (i.e., 2,4-dichlorophenol, and sulfamethoxazole) was 20.01 %-24.80 % higher in the ES group than in the control group. The sediment of the ES group had a higher capacity (30.55 %) and a lower electrical resistance (29.15 %) compared to the control group, which subsequently promoted the dissimilatory iron reduction to produce Fe(II) for triggering a Fenton-like process. The increased extracellular respiratory capacity under electrical stimulation could be attributed to the polarization of C-N and CO bonds, which provided more electron storage sites and thus participated in proton-coupled electron transfer. In addition, the concentration of ATP and co-enzymes (NADH/NAD+ and Complex I/Complex III), reflecting electron exchange within respiratory chains, increased distinctly under electrical stimulation. Applying electrical stimulation seemed feasible to increase ROS production and contaminant degradation in the rhizosphere, deepening the understanding of electrical stimulation to promote the production of ROS in the natural system.
Collapse
Affiliation(s)
- Xuepeng Wang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qilin Yu
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yijing Gong
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yaobin Zhang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.
| |
Collapse
|
4
|
Wang Y, Guo H, Li X, Chen X, Peng L, Zhu T, Sun P, Liu Y. Peracetic acid (PAA)-based pretreatment effectively improves medium-chain fatty acids (MCFAs) production from sewage sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100355. [PMID: 38192428 PMCID: PMC10772567 DOI: 10.1016/j.ese.2023.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
Peracetic acid (PAA), known for its environmentally friendly properties as a oxidant and bactericide, is gaining prominence in decontamination and disinfection applications. The primary product of PAA oxidation is acetate that can serve as an electron acceptor (EA) for the biosynthesis of medium-chain fatty acids (MCFAs) via chain elongation (CE) reactions. Hence, PAA-based pretreatment is supposed to be beneficial for MCFAs production from anaerobic sludge fermentation, as it could enhance organic matter availability, suppress competing microorganisms and furnish EA by providing acetate. However, such a hypothesis has rarely been proved. Here we reveal that PAA-based pretreatment leads to significant exfoliation of extracellular polymeric substances (EPS) from sludge flocs and disruption of proteinic secondary structures, through inducing highly active free radicals and singlet oxygen. The production of MCFAs increases substantially to 11,265.6 mg COD L-1, while the undesired byproducts, specifically long-chain alcohols (LCAs), decrease to 723.5 mg COD L-1. Microbial activity tests further demonstrate that PAA pretreatment stimulates the CE process, attributed to the up-regulation of functional genes involved in fatty acid biosynthesis pathway. These comprehensive findings provide insights into the effectiveness and mechanisms behind enhanced MCFAs production through PAA-based technology, advancing our understanding of sustainable resource recovery from sewage sludge.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian, 350116, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Yu MY, Sun JP, Li SF, Sun J, Liu XM, Wang AQ. Effect of microwaves combined with peracetic acid to improve the dewatering performance of residual sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44885-44899. [PMID: 38954344 DOI: 10.1007/s11356-024-33931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
The activated sludge process plays a crucial role in modern wastewater treatment plants. During the treatment of daily sewage, a large amount of residual sludge is generated, which, if improperly managed, can pose burdens on the environment and human health. Additionally, the highly hydrated colloidal structure of biopolymers limits the rate and degree of dewatering, making mechanical dewatering challenging. This study investigates the impact and mechanism of microwave irradiation (MW) in conjunction with peracetic acid (PAA) on the dewatering efficiency of sludge. Sludge dewatering effectiveness was assessed through capillary suction time (CST) and specific resistance to filtration (SRF). Examination of the impact of MW-PAA treatment on sludge dewatering performance involved assessing the levels of extracellular polymeric substances (EPS), employing three-dimensional excitation-emission matrix (3D-EEM), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy. Findings reveal that optimal dewatering performance, with respective reductions of 91.22% for SRF and 84.22% for CST, was attained under the following conditions: microwave power of 600 W, reaction time of 120 s, and PAA dosage of 0.25 g/g MLSS. Additionally, alterations in both sludge EPS composition and floc morphology pre- and post-MW-PAA treatment underwent examination. The findings demonstrate that microwaves additionally boost the breakdown of PAA into •OH radicals, suggesting a synergistic effect upon combining MW-PAA treatment. These pertinent research findings offer insights into employing MW-PAA technology for residual sludge treatment.
Collapse
Affiliation(s)
- Ming-Yuan Yu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Jian-Ping Sun
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Shao-Feng Li
- Shenzhen Polytechnic University, Shenzhen, 518055, China.
| | - Jian Sun
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiao-Ming Liu
- Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Ao-Qian Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| |
Collapse
|
6
|
Sun Z, Song X, Wu Y, Jie J, Zhang Z. Synergistic effects of peracetic acid and free ammonia pretreatment on anaerobic fermentation of waste activated sludge to promote short-chain fatty acid production for polyhydroxyalkanoate biosynthesis: Mechanisms and optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121078. [PMID: 38723503 DOI: 10.1016/j.jenvman.2024.121078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Peracetic acid (PAA) combined with free ammonia (FA) pretreatment can be utilized to promote anaerobic fermentation (AF) of waste activated sludge (WAS) to produce short-chain fatty acids (SCFAs), and the resulting SCFAs are desirable carbon sources (C-sources) for polyhydroxyalkanoate (PHA) biosynthesis. This work aimed to determine the optimum conditions for PAA + FA pretreatment of sludge AF and the feasibility of using anaerobic fermentation liquor (AFL) for PHA production. To reveal the mechanisms of integrated pretreatment, the impacts of PAA + FA pretreatment on different stages of sludge AF and changes in the microbial community structure were explored. The experimental results showed that the maximum SCFA yield reached 491.35 ± 6.02 mg COD/g VSS on day 5 after pretreatment with 0.1 g PAA/g VSS +70 mg FA/L, which was significantly greater than that resulting from PAA or FA pretreatment alone. The mechanism analysis showed that PAA + FA pretreatment promoted sludge solubilization but strongly inhibited methanogenesis. According to the analysis of the microbial community, PAA + FA pretreatment changed the microbial community structure and promoted the enrichment of bacteria related to hydrolysis and acidification, and Proteiniclasticum, Macellibacteroides and Petrimonas became the dominant hydrolytic and acidifying bacteria. Finally, after alkali treatment, the AFL was utilized for batch-mode PHA production, and a maximum PHA yield of 55.05 wt% was achieved after five operation periods.
Collapse
Affiliation(s)
- Zhaoxia Sun
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Jifa Jie
- Wuhan Planning and Design Institute, Wuhan, 430010, PR China
| | - Zeqian Zhang
- Shanxi Transportation New Technology Development Co.,Ltd., Taiyuan, 030006, PR China
| |
Collapse
|
7
|
Ren W, Zhang Y, Liu X, Li S, Li H, Zhai Y. Peracetic acid pretreatment improves biogas production from anaerobic digestion of sewage sludge by promoting organic matter release, conversion and affecting microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119427. [PMID: 37890304 DOI: 10.1016/j.jenvman.2023.119427] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Peracetic acid (PAA) pretreatment is considered as a novel and effective chemical pretreatment method for sludge. However, there is little information available on potential mechanisms of how PAA pretreatment affects sludge anaerobic digestion (AD). To fill the knowledge gap, this study investigated the effects and potential mechanisms of PAA pretreatment on sludge AD systems from physicochemical and microbiological perspectives. Batch experiments resulted that biogas production was enhanced by PAA pretreatment and the highest cumulative biogas yield (297.94 mL/g VS (volatile solid)) was obtained with 2 mM/g VS of PAA pretreatment. Kinetic model analysis illustrated that the PAA pretreatment improved the biogas potential (Pt) of sludge AD, but prolonged the lag phase (λ) of AD. Mechanistic studies revealed that reactive oxygen species (ROS) (HO•, O2-•, 1O2 and CH3C(O)OO•) were the major intermediate products of PAA decomposition. These ROS effectively promoted the decomposition and solubilization of sludge, and provided more biodegradable organic matter for the following AD reactions. 16S rRNA amplicon sequencing showed that some functional microorganisms associated with hydrolysis, acidogenesis, acetogenesis as well as methanogenesis, such as Hydrogenispora, Romboutsia, Longivirga, Methanosarcina and Methanosaet, were significantly enriched in reactors pretreated with PAA. Redundancy analysis and variation partitioning analysis indicated that functional microorganisms were significantly correlated with intermediate metabolites (soluble carbohydrate, soluble protein, soluble chemical oxygen demand and volatile fatty acids) and cumulative biogas production. This study provides a fresh understanding of the effects and mechanisms of PAA pretreatment on sludge AD, updates the insights into the response of functional microorganisms to PAA pretreatment, and the findings obtained might provide a fundamental basis for chemical pretreatment of sludge AD using oxidants.
Collapse
Affiliation(s)
- Wanying Ren
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yanru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, PR China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hui Li
- Hunan Academy of Forestry and State Key Laboratory of Utilization of Woody Oil Resource, Changsha, 410004, PR China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
8
|
Jiang N, Zhang A, Miruka AC, Wang L, Li X, Xue G, Liu Y. Synergistic effects and mechanisms of plasma coupled with peracetic acid in enhancing short-chain fatty acid production from sludge: Motivation of reactive species and metabolic tuning of microbial communities. BIORESOURCE TECHNOLOGY 2023; 387:129618. [PMID: 37544535 DOI: 10.1016/j.biortech.2023.129618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Suitable waste activated sludge (WAS) pretreatments that boost short-chain fatty acid (SCFA) production from anaerobic fermentation are essential for carbon emission reduction and sludge resource utilization. This study established an efficient WAS pretreatment process combining atmospheric pressure plasma jet (APPJ) with peracetic acid (PAA). The maximum SCFA production (6.5-fold that of the control) largely increased under the optimal conditions (PAA dosage = 25 mg/g VSS (volatile suspended solids), energy consumption = 20.9 kWh/m3). APPJ/PAA pretreatment enhanced the production of multiple reactive species (including OH, CH3C(O)O, 1O2, ONOO-, O2-, and eaq-) and strengthened the effects of H2O2, heat, and light. This synergistically solubilized WAS and released organic substrates for SCFA-producing microbes. In addition, the enrichment of SCFA-producing bacteria and the decrease in SCFA-consuming bacteria favored SCFA accumulation. The key genes encoding for the main substrate metabolism and SCFA production in the metabolic pathway of fermentation were also enhanced.
Collapse
Affiliation(s)
- Nan Jiang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China.
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Lin Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China
| |
Collapse
|
9
|
Yang B, Yu Q, Zhang Y. Applying Dynamic Magnetic Field To Promote Anaerobic Digestion via Enhancing the Electron Transfer of a Microbial Respiration Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2138-2148. [PMID: 36696287 DOI: 10.1021/acs.est.2c08577] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical methods have been reported to strengthen anaerobic digestion, but the continuous electrical power supply and the complicated electrode installed inside the digester have restricted it from practical use. In this study, a dynamic magnetic field (DMF) was placed outside a digester to induce an electromotive force to electrically promote anaerobic digestion. With the applied DMF, an electromotive force of 0.14 mV was generated in the anaerobic sludge, and a 65.02% methane increment was obtained from the anaerobic digestion of waste-activated sludge. Experiments on each stage of anaerobic digestion showed that acidification and methanogenesis that involve electron transfer of respiration chains were promoted with the DMF, while solubilization and hydrolysis less related to respiration chains were not enhanced. Further analysis indicated that the induced electromotive force polarized the protein-like substances in the sludge to increase the conductivity and capacitance of the sludge. Electrotrophic methanogens (Methanothrix) and exoelectrogens (Exiguobacterium) were enriched with DMF. The kinetic isotope effect test confirmed that electron transfer was accelerated with DMF. Consistently, the concentration ratio of co-enzymes (NADH/NAD+ and F420H2/F420) that reflects the electron exchange with respiration chains significantly increased. Applying the DMF seemed a more accessible strategy to electrically strengthen anaerobic digestion.
Collapse
Affiliation(s)
- Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|