1
|
Li Y, Liu Y, Yu S, Xing B, Xu X, Yu H, Wang L, Wang D, Liu C, Yu D. Vigilance against climate change-induced regime shifts for phosphorus restoration in shallow lake ecosystems. WATER RESEARCH 2025; 278:123397. [PMID: 40043580 DOI: 10.1016/j.watres.2025.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/25/2025] [Accepted: 02/25/2025] [Indexed: 04/14/2025]
Abstract
The dual pressure of anthropogenic activities and frequent extreme weather events has triggered a transition from macrophyte to algal dominance in shallow lakes. Phosphorus (P) is the key driver of regime shifts that can lead to a decline in the stability and resilience of lake ecosystems. However, the mechanisms underlying such regime shifts, and the effects of state transitions on internal P loading during macrophyte restoration in large shallow eutrophic lakes, remain to be fully elucidated. This study utilised long-term in situ monitoring data, across three distinct lake states (bare ground, macrophyte-dominated stage, and algae-dominated stage) to elucidate the accumulation and release mechanisms of sedimentary P during regime shifts. The findings demonstrated that the rehabilitation of submerged plants efficiently reduced internal P loading (water column P, sediment P fractions, and P flux), while the persistence of algal blooms was driven by the reductive release of Fe-P from sediments and the dissolution of Al-P from suspended particulate matter. High temperature, low dissolved oxygen, and high pH largely modulate the pathways and mechanisms of P supply during regime shifts. The combined pressures of extreme weather (heavy rainfall, strong winds, and extreme heat) and trophic cascades from fish stocking can trigger a shift from macrophytes to algae in shallow lakes. Appropriate management of the structure and biomass of aquatic animal communities (e.g., small-bodied or omnibenthivorous fish) and optimization of the food web structure can effectively improve water quality and maintain ecosystem stability. These findings enrich the theoretical understanding of regime-shift mechanisms from an ecosystem perspective and offer novel insights into P remediation in large shallow eutrophic lakes.
Collapse
Affiliation(s)
- Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China; School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China
| | - Yuan Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Siqi Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Bin Xing
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Xinwei Xu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Ligong Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Dihua Wang
- School of Resource and Environmental Sciences, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China.
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
2
|
Luo J, Duan H, Xu Y, Shen M, Zhang Y, Xiao Q, Ni G, Wang K, Xin Y, Qi T, Feng L, Qiu Y, Jeppesen E, Woolway RI. Global trends and regime state shifts of lacustrine aquatic vegetation. Innovation (N Y) 2025; 6:100784. [PMID: 40098676 PMCID: PMC11910881 DOI: 10.1016/j.xinn.2024.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 12/30/2024] [Indexed: 03/19/2025] Open
Abstract
Aquatic vegetation (AV) is vital for maintaining the health of lake ecosystems, with submerged aquatic vegetation (SAV) and floating/emergent aquatic vegetation (FEAV) representing clear and shaded states, respectively. However, global SAV and FEAV dynamics are poorly understood due to data scarcity. To address this gap, we developed an innovative AV mapping algorithm and workflow using satellite imagery (1.4 million Landsat images) from 1989 to 2021 and created a global database of AV across 5,587 shallow lakes. Our findings suggest that AV covers 108,186 km2 on average globally, accounting for 28.9% (FEAV, 15.8%; SAV, 13.1%) of the total lake area. Over two decades, we observed a notable transition: SAV decreased by 30.4%, while FEAV increased by 15.6%, leading to a substantial net loss of AV. This global trend indicates a shift from clear to shaded conditions, increasingly progressing toward turbid states dominated by phytoplankton. We found that human-induced eutrophication was the primary driver of change until the early 2010s, after which global warming and rising lake temperatures became the dominant drivers. These trends serve as a warning sign of deteriorating lake health worldwide. With future climate warming and intensified eutrophication, these ongoing trends pose a significant risk of disrupting lake ecosystems.
Collapse
Affiliation(s)
- Juhua Luo
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Hongtao Duan
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Ying Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Ming Shen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yunlin Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Qitao Xiao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guigao Ni
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kang Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yihao Xin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Tianci Qi
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lian Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinguo Qiu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Erik Jeppesen
- Limnology Laboratory, Department of Biology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Ecoscience and Center for Water Technology (WATEC), Aarhus University, 8000 Aarhus, Denmark
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | | |
Collapse
|
3
|
Wang K, Ren H, Yuan S, Jiang X, Wang P. Exploring the diversity of dissolved organic matter (DOM) properties and sources in different functional areas of a typical macrophyte - derived lake combined with optical spectroscopy and FT-ICR MS analysis. J Environ Sci (China) 2025; 147:462-473. [PMID: 39003062 DOI: 10.1016/j.jes.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 07/15/2024]
Abstract
Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.
Collapse
Affiliation(s)
- Kun Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shengwu Yuan
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Jiang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Pengfei Wang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Shen C, Qian M, Song Y, Chen B, Yang J. Surface pCO 2 and air-water CO 2 fluxes dominated by submerged aquatic vegetation: Implications for carbon flux in shallow lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122839. [PMID: 39405876 DOI: 10.1016/j.jenvman.2024.122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024]
Abstract
Inland lakes are crucial for processing, storing, and releasing carbon dioxide (CO2), and they play a significant role in the global carbon cycle and climate change. Studies have shown that inland lakes are mostly supersaturated in CO2, making them significant sources to the atmosphere. However, estimating CO2 fluxes from inland lakes is still challenging due to large variations in surface water CO2 partial pressure (pCO2). Submerged aquatic vegetation (SAV) is widely found in aquatic ecosystems, especially in shallow lakes. However, their role in lake-wide carbonate chemistry has not been thoroughly investigated. Accurately measuring air-water CO2 exchange and understanding the environmental factors that control these fluxes in vegetated ecosystems are essential for reducing uncertainties in global CO2 emission estimates. In this study, high-resolution (3-h interval) field measurements were made along the nearshore of eastern Lake Taihu during the SAV growing seasons to examine their effects on surface water pCO2 and air-water exchange. Our results showed evident daily variations in water chemistry and air-water fluxes. Daytime air-water CO2 exchange switched from sinks in summer to sources in autumn. The vegetation sites were observed to be strong CO2 sources consistently at night. The density of aquatic vegetation was found to be positively correlated with the daily range of pCO2, highlighting their role in regulating surface water carbonate chemistry. Negative correlations were found between water depth and surface pCO2. These results highlight the importance of aquatic vegetation and daily variations in reducing uncertainties in carbon budgets of shallow aquatic systems.
Collapse
Affiliation(s)
- Chunqi Shen
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Mengtian Qian
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Yang Song
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Baoshan Chen
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jie Yang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Yang K, Yin Y, Xu Y, Wang S, Gao M, Peng K, Luo J, Gao J, Cai Y. Hydrometeorological conditions drive long-term changes in the spatial distribution of Potamogeton crispus in a subtropical lake. FRONTIERS IN PLANT SCIENCE 2024; 15:1424300. [PMID: 39045598 PMCID: PMC11263109 DOI: 10.3389/fpls.2024.1424300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
Globally, anthropogenic disturbance and climate change caused a rapid decline of submerged macrophytes in lake ecosystems. Potamogeton crispus (P. crispus), a species that germinates in winter, explosively expanded throughout many Chinese lakes, yet the underlying mechanism remained unclear. Here, this study examined the long-term changes in the distribution patterns of P. crispus in Lake Gaoyou by combining remote sensing images and hydrometeorological data from 1984 to 2022 and water quality data from 2009 to 2022. It aims to unravel the relationships between the distribution patterns of P. crispus and hydrometeorological and water quality factors. The results showed that the area of P. crispus in Lake Gaoyou showed a slight increase from 1984 to 2009, a marked increase from 2010 to 2019, followed by a decline after 2020. Spatially, P. crispus was primarily distributed in the western and northern parts of Lake Gaoyou, with less distribution in the central and southeastern parts of the lake. Wind speed (WS), temperature (Temp), water level (WL), ammonia nitrogen (NH3-N), and Secchi depth (SD) were identified as the key factors regulating the variation in the P. crispus area in Lake Gaoyou. We found that the P. crispus area showed an increasing trend with increasing Temp, WL, and SD and decreasing WS and NH3-N. The influence of environmental factors on the area of P. crispus in Lake Gaoyou varied among seasons. The results indicated that hydrometeorology (WS, Temp, and WL) may override water quality (NH3-N and SD) in driving the succession of P. crispus distribution. The findings of this study offer valuable insights into the recent widespread expansion of P. crispus in shallow lakes across Eastern China.
Collapse
Affiliation(s)
- Ke Yang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Yin
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaobo Wang
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou, China
| | - Mingyuan Gao
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, China
| | - Kai Peng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Juhua Luo
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junfeng Gao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongjiu Cai
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Fu H, Ge Y, Cai G, Deng J, Liu H, Wu A, Li Y, Li W, Yuan G, Jeppesen E. Weakened casual feedback loops following intensive restoration efforts and climate changes in a large shallow freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169601. [PMID: 38159751 DOI: 10.1016/j.scitotenv.2023.169601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Understanding how phytoplankton interacts with local and regional drivers as well as their feedbacks is a great challenge, and quantitative analyses of the regulating role of human activities and climate changes on these feedback loops are also limited. By using monthly monitoring dataset (2000-2017) from Lake Taihu and empirical dynamic modelling to construct causal networks, we quantified the strengths of causal feedbacks among phytoplankton, local environments, zooplankton, meteorology as well as global climate oscillation. Prevalent bidirectional causal linkages between phytoplankton biomass (chlorophyll a) and the tested drivers were found, providing holistic and quantitative evidence of the ubiquitous feedback loops. Phytoplankton biomass exhibited the highest feedbacks with total inorganic nitrogen and ammonia and the lowest with nitrate. The feedbacks between phytoplankton biomass and environmental factors from 2000 to 2017 could be classified into two groups: the local environments (e.g., nutrients, pH, transparency, zooplankton biomass)-driven enhancement loops promoting the response of the phytoplankton biomass, and the climate (e.g., wind speed)-driven regulatory loops suppressing it. The two counterbalanced groups modified the emergent macroecological patterns. Our findings revealed that the causal feedback networks loosened significantly after 2007 following nutrient loading reduction and unsuccessful biomanipulation restoration attempts by stocking carp. The strength of enhancement loops underwent marked decreases leading to reduced phytoplankton responses to the tested drivers, while the climate (decreasing wind speed, warming winter)-driven regulatory loops increased- like a tug-of-war. To counteract the self-amplifying feedback loops, the present eutrophication mitigation efforts, especially nutrient reduction, should be continued, and introduction of alternative measures to indirectly regulate the critical components (e.g., pH, Secchi depth, zooplankton biomass) of the loops would be beneficial.
Collapse
Affiliation(s)
- Hui Fu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yili Ge
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Guojun Cai
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Jianmin Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Huanyao Liu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Aiping Wu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Youzhi Li
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Wei Li
- Research Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang 330099, PR China
| | - Guixiang Yuan
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Erik Jeppesen
- Department of Bioscience and Centre for Water Technology/WATEC, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, PR China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, 33731 Erdemli-Mersin, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, PR China
| |
Collapse
|
7
|
Lu L, Luo J, Xin Y, Xu Y, Sun Z, Duan H, Xiao Q, Qiu Y, Huang L, Zhao J. A novel strategy for estimating biomass of submerged aquatic vegetation in lake integrating UAV and Sentinel data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169404. [PMID: 38104807 DOI: 10.1016/j.scitotenv.2023.169404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Submerged aquatic vegetation (SAV) plays a fundamental ecological role in mediating carbon cycling within lakes, and its biomass is essential to assess the carbon sequestration potential of lake ecosystems. Remote sensing (RS) offers a powerful tool for large-scale SAV biomass retrieval. Given the underwater location of SAV, the spectral signal in RS data often exhibits weakness, capturing primarily horizontal structure rather than volumetric information crucial for biomass assessment. Fortunately, easily-measured SAV coverage can serve as an intermediary variable for difficultly-quantified SAV biomass inversion. Nevertheless, obtaining enough SAV coverage samples matching satellite image pixels for robust model development remains problematic. To overcome this challenge, we employed a UAV to acquire high-precision data, thereby replacing manual SAV coverage sample collection. In this study, we proposed an innovative strategy integrating unmanned aerial vehicle (UAV) and satellite data to invert large-scale SAV coverage, and subsequently estimate the biomass of the dominant SAV population (Potamogeton pectinatus) in Ulansuhai Lake. Firstly, a coverage-biomass model (R2 = 0.93, RMSE = 0.8 kg/m2) depicting the relationship between SAV coverage and biomass was developed. Secondly, in a designed experimental area, a high-precision multispectral image was captured by a UAV. Based on the Normalized Difference Water Index (NDWI), the UAV-based image was classified into non-vegetated and vegetated areas, thereby generating an SAV distribution map. Leveraging spatial correspondence between satellite pixels and the UAV-based SAV distribution map, the proportion of SAV within each satellite pixel, referred to as SAV coverage, was computed, and a coverage sample set matched with satellite pixels was obtained. Subsequently, based on the sample set, a satellite-scale SAV coverage estimation model (R2 = 0.78, RMSE = 14.05 %) was constructed with features from Sentinel-1 and Sentinel-2 data by XGBoost algorithm. Finally, integrating the coverage-biomass model with the obtained coverage inversion results, fresh biomass of SAV in Ulansuhai Lake was successfully estimated to be approximately 574,600 tons.
Collapse
Affiliation(s)
- Lirong Lu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juhua Luo
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yihao Xin
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Xu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Sun
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Duan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yinguo Qiu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Linsheng Huang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China
| | - Jinling Zhao
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Cui Z, Huang Q, Sun J, Wan B, Zhang S, Shen J, Wu J, Li J, Yang C. The Secchi disk depth to water depth ratio affects morphological traits of submerged macrophytes: Development patterns and ecological implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167882. [PMID: 37858823 DOI: 10.1016/j.scitotenv.2023.167882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Water clarity, represented by Secchi disk depth (SD), and water depth (WD) alter bottom light availability, and SD/WD is critical for morphological trait development of submerged macrophytes in freshwater ecosystems. However, the underlying mechanism and trait development patterns of submerged macrophytes to a decreasing SD/WD gradient remains largely unknown. Here, we performed a 42-day mesocosm experiment with the erect type submerged macrophyte, Hydrilla verticillata, along a decreasing SD/WD gradient to study the relationship of morphological trait development with light availability, to determine the critical SD/WD at which changes in the development of morphological traits occur, and to gain insights into the potential mechanism involved. The results indicate that most of the morphological traits, including biomass, relative growth rate, number of clonal propagules, and the root/shoot ratio decreased with a decrease in the SD/WD ratio. Conversely, plant height and shoot increment rate increased with a decrease in the SD/WD ratio. Principal component analysis indicated that the SD/WD ratio is critical in determining the growth, stability, and reproduction of H. verticillata, and that only SD/WD ratios ≥ 0.45 and ≥0.55 ensured growth ability and stability, respectively. Possible development patterns of functional traits in relation to SD/WD reduction were investigated, and patterns of key traits of H. verticillata were distinct from those of Vallisneria natans, indicating different strategies for the adaptation to conditions of decreasing light availability. These results highlight the role of adaptive changes in morphology, resource allocation and life strategies for the maintenance of growth, stability and resilience of submerged macrophytes in low light conditions. Our present study provides a basis from which we could enhance our understanding of the critical transition mechanisms involved in morphological trait development in response to bottom light availability.
Collapse
Affiliation(s)
- Zhijie Cui
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiajia Sun
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Bin Wan
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Shaohua Zhang
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jianwei Shen
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jingwen Wu
- Bureau of Water Resource of Wujiang District, Suzhou 215228, China
| | - Jianhua Li
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Changtao Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou 215200, China.
| |
Collapse
|
9
|
Xue SM, Jiang SQ, Li RZ, Jiao YY, Kang Q, Zhao LY, Li ZH, Chen M. The decomposition of algae has a greater impact on heavy metal transformation in freshwater lake sediments than that of macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167752. [PMID: 37838060 DOI: 10.1016/j.scitotenv.2023.167752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Heavy metal (HM) pollution is a major concern in freshwater ecosystem management. The different types of endogenous organic matter and the way their decomposition affects HM transformation in freshwater lakes is not well understood. An ex situ mesocosm study was conducted to compare HM transformation in sediments during anaerobic decomposition of cyanobacterial bloom biomass (CBB) and submerged cyanobacterial vegetation in Lake Taihu, known as Potamogeton malaianus (PM). Microbial community structures were examined through Illumina sequencing of 16S rDNA. Results indicate that Zn had a remarkably higher amount of potential mobile fraction than other heavy metals (Cr, Pb, Cu, Ni, and Cd) detected in sediments, especially in sediments collected from CBB-dominated areas (approximately 150 mg kg-1). CBB decomposition has caused a significant increase in exchangeable Zn content in sediments and a decrease in reducible Zn that was three times greater than PM decomposition. Additionally, oxidizable Zn content declined during CBB decomposition but increased during PM decomposition. Furthermore, the relative abundance of the main fermentative bacteria and some sulfate-reducing bacteria genera (e.g., Desulfomicrobium) were significantly associated with the HM content of exchangeable and reducible fractions during CBB decomposition. Overall, the findings indicate that Zn is more susceptible to endogenous organic matter decomposition than other metals in freshwater lakes, and the impacts of CBB decomposition on the transformation of heavy metals in sediment are greater than that of submerged macrophyte decomposition.
Collapse
Affiliation(s)
- Si-Min Xue
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Shu-Qi Jiang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Rui-Ze Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Yi-Ying Jiao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qun Kang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Li-Ya Zhao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Zhao-Hua Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China
| | - Mo Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
10
|
Liu C, Shen Q, Gu X, Zhang L, Han C, Wang Z. Burial or mineralization: Origins and fates of organic matter in the water-suspended particulate matter-sediment of macrophyte- and algae-dominated areas in Lake Taihu. WATER RESEARCH 2023; 243:120414. [PMID: 37516078 DOI: 10.1016/j.watres.2023.120414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Increased algal blooms and loss of aquatic vegetation are critical environmental issues associated with shallow lakes worldwide. The increase in organic matter (OM) in both macrophyte-dominated areas (MDAs) and algae-dominated areas (ADAs) has exacerbated these problems. Most OM in water is concentrated as suspended particulate matter (SPM), which eventually migrates to the sediment. However, the detailed origins and fates of OM in water-SPM-sediment systems with coexisting MDAs and ADAs remain unclear. Therefore, in this study, we conducted monthly field investigations in Lake Taihu, focusing on OM-migration patterns in an MDA and an ADA. The C/N mass ratios, δ13C contents, and OM compositions of the water, SPM, and sediment were analyzed. Our findings revealed that autochthonous sources of OM prevailed in water, whereas terrestrial sources prevailed in SPM and sediment. Rapid decomposition processes of microbial- and algae-derived dissolved OM were discovered along the water-SPM-sediment pathways in both areas. A trend towards a shift from macrophytes to algae in the MDA was also discovered. Overall, the entire lake underwent a burial process of OM in both types of areas, with mineralization mostly occurring during the algal-bloom seasons and more strongly in the ADA. Furthermore, we deduced that a decrease in the OM-burial rate, but an increase in the mineralization rate, might occur after a complete shift from a macrophyte- to an algae-dominated status. Such a shift might change the carbon-cycle process in eutrophic shallow lakes and should be given more attention in future research.
Collapse
Affiliation(s)
- Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaozhi Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chao Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhaode Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
11
|
Kang L, Zhu G, Zhu M, Xu H, Zou W, Xiao M, Zhang Y, Qin B. Bloom-induced internal release controlling phosphorus dynamics in large shallow eutrophic Lake Taihu, China. ENVIRONMENTAL RESEARCH 2023; 231:116251. [PMID: 37245569 DOI: 10.1016/j.envres.2023.116251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
High phosphorus (P) concentrations are commonly observed in lakes during algal blooms despite massive efforts on external nutrient reduction. However, the knowledge about the relative contribution of internal P loading linked with algal blooms on lake phosphorus (P) dynamics remains limited. To quantify the effect of internal loading on P dynamics, we conducted extensive spatial and multi-frequency nutrient monitoring from 2016 to 2021 in Lake Taihu, a large shallow eutrophic lake in China, and its tributaries (2017-2021). The in-lake P stores (ILSP) and external loading were estimated and then internal P loading was quantified from the mass balance equation. The results showed that the in-lake total P stores (ILSTP) ranged from 398.5 to 1530.2 tons (t), and exhibited a dramatic intra- and inter-annual variability. The annual internal TP loading released from sediment ranged from 1054.3 to 1508.4 t, which was equivalent to 115.6% (TP loading) of the external inputs on average, and responsible for the fluctuations of ILSTP on a weekly scale. High-frequency observations exemplified that ILSTP increased by 136.4% during algal blooms in 2017, while by only 47.2% as a result of external loading after heavy precipitation in 2020. Our study demonstrated that both bloom-induced internal loading and storm-induced external loading are likely to run counter significantly to watershed nutrient reduction efforts in large shallow lakes. More importantly, bloom-induced internal loading is higher than storm-induced external loading over the short term. Given the positive feedback loop between internal P loadings and algal bloom in eutrophic lakes, which explains the significant fluctuation of P concentration while nitrogen concentration decreased. It is emphasized that internal loading and ecosystem restoration are unignorable in shallow lakes, particularly in the algal-dominated region.
Collapse
Affiliation(s)
- Lijuan Kang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guangwei Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Mengyuan Zhu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Hai Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Wei Zou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Man Xiao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yunlin Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
12
|
Hao A, Kobayashi S, Chen F, Yan Z, Torii T, Zhao M, Iseri Y. Exploring invertebrate indicators of ecosystem health by focusing on the flow transitional zones in a large, shallow eutrophic lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82717-82731. [PMID: 37328726 PMCID: PMC10349724 DOI: 10.1007/s11356-023-28045-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
The river-lake transitional zone provides a unique environment for the biological community and can reduce pollution inputs in lake ecosystems from their catchments. To explore environmental conditions with high purification potential in Lake Taihu and indicator species, we examined the river-to-lake changes in water and sediment quality and benthic invertebrate communities in the transitional zone of four regions. The spatial variations in the environment and invertebrate community observed in this study followed the previously reported patterns in Taihu; the northern and western regions were characterized by higher nutrient concentrations in water, higher heavy metal concentrations in sediment, and higher total invertebrate density and biomass dominated by pollution-tolerant oligochaetes and chironomids. Although nutrient concentrations were low and transparency was high in the eastern region, the taxon richness was the lowest there, which disagreed with the previous findings and might be due to a poor cover of macrophytes in this study. The river-to-lake change was large in the southern region for water quality and the invertebrate community. Water circulation induced by strong wind-wave actions in the lake sites of the southern region is assumed to have promoted photosynthetic and nutrient uptake activities and favored invertebrates that require well-aerated conditions such as polychaetes and burrowing crustaceans. Invertebrates usually adapted to brackish and saline environments are suggested to be indicators of a well-circulated environment with active biogeochemical processes and a less eutrophic state in Taihu, and wind-wave actions are key to maintaining such a community and natural purifying processes.
Collapse
Affiliation(s)
- Aimin Hao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Sohei Kobayashi
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Fangbo Chen
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhixiong Yan
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Takaaki Torii
- Laboratory of Molecular Reproductive Biology, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka City, Shizuoka, Japan
- Institute of Environmental Ecology, Environmental Ecology Division, Idea Consultants Inc., Yaizu City, Shizuoka, Japan
| | - Min Zhao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Yasushi Iseri
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
13
|
Yang C, Shen X, Wu J, Shi X, Cui Z, Tao Y, Lu H, Li J, Huang Q. Driving forces and recovery potential of the macrophyte decline in East Taihu Lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118154. [PMID: 37207462 DOI: 10.1016/j.jenvman.2023.118154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Macrophytes are of key importance to the structure and ecological services of shallow lakes and are sensitive to anthropogenic and natural perturbations. Ongoing eutrophication and hydrological regime change affect macrophytes through changes in water transparency and water level, which lead to a dramatic decrease in bottom light availability. Here an integrated dataset (2005-2021) of multiple environmental factors is used to demonstrate the driving forces and recovery potential of the macrophyte decline in East Taihu Lake by using a critical indicator, which is the ratio of the Secchi disk depth to the water depth (SD/WD). The macrophyte distribution area showed a remarkable decrease from 136.1 ± 9.7 km2 (2005-2014) to 66.1 ± 6.5 km2 (2015-2021). The macrophyte coverage in the lake and in the buffer zone decreased by 51.4% and 82.8%, respectively. The structural equation model and correlation analysis showed that the distribution and coverage of macrophytes decreased with the decrease in the SD/WD over time. Moreover, an extensive hydrological regime change, which caused a sharp decrease in SD and an increase in the water level, is likely to be the driving force that brought about the decline of macrophytes in this lake. The proposed recovery potential model shows that the SD/WD has been low in recent years (2015-2021), and that this SD/WD cannot ensure the growth of submerged macrophytes and is unlikely to ensure the growth of floating-leaved macrophytes, especially in the buffer zone. The approach developed in the present study provides a basis for the assessment of macrophyte recovery potential and the management of ecosystems in shallow lakes that suffer from macrophyte loss.
Collapse
Affiliation(s)
- Changtao Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
| | - Xiaobing Shen
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China; Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Jianbin Wu
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China; Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Xinyi Shi
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
| | - Zhijie Cui
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuwei Tao
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China; Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Haiming Lu
- Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Jianhua Li
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
14
|
Zeng S, Qin Z, Ruan B, Lei S, Yang J, Song W, Sun Q. Long-term dynamics and drivers of particulate phosphorus concentration in eutrophic lake Chaohu, China. ENVIRONMENTAL RESEARCH 2023; 221:115219. [PMID: 36608765 DOI: 10.1016/j.envres.2023.115219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Particulate phosphorus (PP) plays an important biological role in the eutrophication process, and is thus an important water quality parameter for assessing climatic change and anthropogenic activity factors that affect aquatic ecosystems. Here, we used 20-year Moderate Resolution Imaging Spectroradiometer (MODIS) data to explore the patterns and trends of PP concentration (CPP) in eutrophic Lake Chaohu based on a new empirical model. The validation results indicated that the developed model performed satisfactorily in estimating CPP, with a mean absolute percentage error of 31.89% and root mean square error of 0.022 mg/L. Long-term MODIS observations (2000-2019) revealed that the CPP of Lake Chaohu has experienced an overall increasing trend and distinct spatiotemporal heterogeneity. The driving factor analysis revealed that the chemical fertilizer consumption, municipal wastewater, industrial sewage, precipitation, and air temperature were the five potential driving factors and collectively explained more than 81% of the long-term variation in CPP. This study provides the long-term datasets of CPP in inland waters and new insights for future water eutrophication control and restoration efforts.
Collapse
Affiliation(s)
- Shuai Zeng
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China
| | - Zihong Qin
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China
| | - Baozhen Ruan
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou, 510006, PR China
| | - Shaohua Lei
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, PR China
| | - Jian Yang
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China
| | - Weiwei Song
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China
| | - Qiang Sun
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou, 510535, PR China.
| |
Collapse
|