1
|
Chen S, Zhang C, Liu X, Shi Y, Lyu L, Gao G, Yang T, Fan K, Zhang L, Li J, Song L, Yan S, Chu H. Trophic transfer efficiency of microbial food webs differs in water and sediment in alpine wetlands across the Tibetan Plateau. ENVIRONMENTAL RESEARCH 2025; 274:121291. [PMID: 40049352 DOI: 10.1016/j.envres.2025.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
The Tibetan Plateau contains the world's largest area of alpine wetlands, where coexisting water and sediment environments provide habitats for multitrophic microbial communities. However, the microbial food web (MFW) of coexisting water and sediment in wetland ecosystems and their responses to environmental changes remain unclear. In this study, we investigated MFWs (including archaea, bacteria, and eukaryotes) across 21 paired samples from alpine wetlands on the Tibetan Plateau along a salinity gradient. In both water and sediment, the MFWs exhibited enhanced predation and decreased mutualism with increasing salinity, with the total trophic transfer efficiency (TTE) community of bacteria, protists and metazoa increasing. The TTE of MFWs in sediment was higher than that in water, and the competition associations among species decreased while the cooperation associations increased. Compared to sediment, the MFWs in water were more complex and vulnerable. Salinity exerted top-down control on MFWs by directly influencing higher trophic levels (e.g., metazoa) in water. In contrast, salinity affected the MFWs through bottom-up effects by impacting lower trophic levels (heterotrophic archaea, heterotrophic bacteria) in sediment. Overall, this study provides new insights into understanding the trophic cycle and interactions of multi-trophic biological communities in coexisting water and sediment, and how MFWs adapt to environmental change.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lihui Lyu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guifeng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Liyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiasui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Luyao Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Subo Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Ren Y, Fan Q, Ji G, Li J. Habitat-specific regulation of microbiota in long-distance water diversion systems. WATER RESEARCH 2025; 270:122848. [PMID: 39608161 DOI: 10.1016/j.watres.2024.122848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Long-distance water diversion projects typically utilize various hydro-engineering facilities, creating complex and dynamic habitats. However, the microbial dynamics of multi-trophic microorganisms during water diversion and their responses to different hydro-engineering habitats remain poorly understood. In this study, we investigated bacteria, fungi, protists, and metazoa across tunnels, reservoirs, and inverted siphon piping along the main and northern branches of the Yellow River Diversion Project into Shanxi, during spring, summer, and autumn. Our results showed that both seasonal factors and hydro-engineering facilities significantly influenced the composition and diversity of microbiota. Bacterial community composition remained relatively stable during water transport, while fungi, protists, and metazoa exhibited greater spatial variability and habitat specificity. Stochastic processes predominantly governed the community assembly of all microbial groups across all hydro-engineering habitats. The structural features of the main network modules within the co-occurrence networks of multi-trophic species were highly consistent across different seasons within the same habitat, indicating the stable adaptation of microbiota interactions to the same habitat. Patterns of intra-kingdom (within bacteria, fungi, protists, or metazoa) and inter-kingdom (between bacteria, fungi, protists, and metazoa) associations of microbiota in different habitats varied, reflecting specific adaptations of microorganisms to particular habitats and suggesting an important role for environmental filtering. Variance partitioning analysis revealed that environmental factors accounted for 34.21 % to 45.19 % of the variation in the four microbial taxa. Our findings reveal the ecological processes of microbial assembly and adaptation in large-scale water diversion projects, providing insights for project management and risk control.
Collapse
Affiliation(s)
- Yanmin Ren
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Qirui Fan
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
3
|
Ren Y, Shi W, Chen J, Li J. Water quality drives the reconfiguration of riverine planktonic microbial food webs. ENVIRONMENTAL RESEARCH 2024; 249:118379. [PMID: 38331144 DOI: 10.1016/j.envres.2024.118379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
The food web is a cycle of matter and energy within river ecosystems. River environmental changes resulting from human activities are increasingly threatening the composition and diversity of global aquatic organisms and the multi-trophic networks. How multiple environmental factors influence food web patterns among multi-trophic microbial communities in rivers remains largely unknown. Using water quality evaluation and meta-omics techniques, we investigated the composition, structure and interaction characteristics, and drivers of food webs of microorganisms (archaea, bacteria, fungi, protists, metazoa, viridiplantae and viruses) at multiple trophic levels in different water quality environments (Classes II, III, and IV). First, water quality deterioration led to significant changes in the composition of the microbial community at multiple trophic levels, which were represented by the enrichment of Euryarchaeota in the archaeal community, the increase of r-strategists in the bacterial community, and the increase of the proportion of predators in the protist community. Second, deteriorating water quality resulted in a significant reduction in the dissimilarity of community structure (homogenization of community structure in Class III and IV waters). Of the symbiotic, parasitic, and predatory networks, the community networks in Class II water all showed the most stable symbiotic, parasitic, and predatory correlations (higher levels of modularity in the networks). In Class III and IV waters, nutrient inputs have led to increased reciprocal symbiosis and decreased competition between communities, which may have the risk of a positive feedback loop driving a system collapse. Finally, inputs of phosphorus and organic matter could be the main drivers of changes in the planktonic microbial food web in the Fen River. Overall, the results indicated the potential ecological risks of exogenous nutrient inputs, which were important for aquatic ecosystem conservation.
Collapse
Affiliation(s)
- Yanmin Ren
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Wei Shi
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
4
|
Guo P, Li C, Liu J, Chai B. Predation has a significant impact on the complexity and stability of microbial food webs in subalpine lakes. Microbiol Spectr 2023; 11:e0241123. [PMID: 37787559 PMCID: PMC10714739 DOI: 10.1128/spectrum.02411-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE As an important part of microbial food webs, protists transfer organic carbon and nutrients to higher trophic levels in aquatic ecosystems. Protist predation often influences the abundance and composition of bacterial communities. However, we still do not understand whether and how predation affects the complexity and stability of microbial food webs. This study assessed the seasonal dynamic characteristics and driving factors of microbial food webs in terms of complexity and stability. Our findings have implications for future surveys to reveal the effects of climate and environmental changes.
Collapse
Affiliation(s)
- Ping Guo
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
- Central Laboratory, Changzhi Medical College, Changzhi, China
| | - Cui Li
- Faculty of Environment Economics, Shanxi University of Finance and Economics, Taiyuan, China
| | - Jinxain Liu
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|