1
|
Yang R, Han X, Wang Y, Liu Y, Sun Q, Su H, Peng S, Lu P, Zhang D, Zhou S. The Three Gorges Dam alters the spatial distribution and flux of microplastics in the Yangtze River. ENVIRONMENTAL RESEARCH 2025; 275:121440. [PMID: 40118316 DOI: 10.1016/j.envres.2025.121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The construction of dams disrupts the natural connectivity of rivers, potentially altering the distribution and movement of pollutants. However, the impacts of dams on microplastic (MP) flux are scarcely considered. By integrating previous findings and conducting supplementary sampling, we mapped the distribution of MPs in the Three Gorges Reservoir (TGR), covering surface water, sediment, the hydro-fluctuation belt, and the riparian zone. The TGR serves as a significant accumulation zone for MPs, with a notably higher concentration of MPs in its water compared to the upstream river water. In the reservoir, MPs are concentrated in the upstream and downstream sections of the water column, the hydro-fluctuation belt and sediment, whereas in the riparian zone, concentrations are higher in the downstream section. The distribution of MPs in reservoir water is strongly correlated (R2 > 0.9) with regional gross domestic product (GDP) and sewage discharge, whereas the factors influencing MPs in sediment, the hydro-fluctuation belt, and the riparian zone are more complex. Human activities, particularly wastewater discharge in populated areas, predominantly contributed 49.89 % to the MPs load in the reservoir. The TGR captures approximately 11,091 ± 6,998 tons of MPs annually, constituting 28.18 % of the MPs flux from the upper Yangtze River.
Collapse
Affiliation(s)
- Runlan Yang
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xu Han
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yutao Wang
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yanxin Liu
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qingqing Sun
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States
| | - Haijie Su
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shuchan Peng
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
| | - Peili Lu
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Daijun Zhang
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China
| | - Shangbo Zhou
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
2
|
Muñoz Yustres JL, Zapata-Restrepo LM, Garcia-Chaves MC, Gomez-Mendez LD. Microplastics in rice-based farming systems and their connection to plastic waste management in the Chicoral district of Espinal-Tolima. CHEMOSPHERE 2025; 378:144423. [PMID: 40252529 DOI: 10.1016/j.chemosphere.2025.144423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
The presence of microplastics (MPs) in agricultural soils is a growing concern, especially in rice cultivation systems, where information is limited, particularly in Latin America. Given the economic importance of this crop in Colombia and the generation of plastic waste from some associated practices, it is crucial to determine the presence of MPs related to agricultural activities in soils dedicated to this activity. This study evaluated the presence of MPs in soils and irrigation water of rice crops in Chicoral, Tolima, Colombia, during two contrasting seasons. Soil samples from seven plots (upper, middle, and lower zones) and water samples from seven points along the irrigation canal were collected. MPs were found in all samples, with similar concentrations in water samples collected in the rainy and dry seasons (0.11 ± 0.10 vs. 0.10 ± 0.06 items/m3, respectively), and higher abundance in soil samples during the rainy season (4 ± 2.71 vs 3.62 ± 1.92 items/50 g). Fragments and fibers were the most abundant forms of plastics (53 % water, 55 % soil), predominantly larger than 100 μm and blue in color. Polypropylene (PP) was the most abundant polymer (50 %) in the meso- and macroplastic samples. Our results suggested that MPs contamination in rice crop soils at Chicoral is influenced by irrigation water transport and improper plastic waste management, highlighting the need for further research on their effects on agricultural systems.
Collapse
Affiliation(s)
| | - Lina María Zapata-Restrepo
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, 050010, Colombia.
| | | | - Luis David Gomez-Mendez
- Department of Microbiology, Environmental and Industrial Biotechnology Research Group (GBAI), Faculty of Science, Pontificia Universidad Javeriana, 110231, Colombia.
| |
Collapse
|
3
|
Varol M, Karakaya G, Arısoy G, Çelik B. Comprehensive analysis of microplastics in water, sediment and fish from a large recreational lake. ENVIRONMENTAL RESEARCH 2025; 279:121799. [PMID: 40345420 DOI: 10.1016/j.envres.2025.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
While global attention has primarily focused on microplastics (MPs) in marine ecosystems, the issue of MP pollution in recreational lakes has received relatively little attention. In this study, the occurrence, spatial and seasonal distribution and characteristics of microplastics (MPs) were investigated for the first time in Lake Hazar (Türkiye), an important recreational lake. Water, sediment and fish (Capoeta umbla) were sampled from the lake in the winter and summer of 2020. Thereafter, the MPs were extracted from the samples using the density separation method. Their abundance, shape, color, and size were determined microscopically, while the polymer types were analyzed using ATR-FTIR. The MPs were detected in all surface water and sediment samples, while they were detected in the gastrointestinal tracts of 28 (35 %) out of 80 fish samples. The abundance of MPs was 74-1091 items/m3 for the surface water, 88-213 items/kg (ww) for sediments and 0-5 items/fish for C. umbla, respectively. The MP concentrations in water samples from the shore sites were found to be significantly higher than those in limnetic sites (p < 0.05). The most common MP shapes, sizes and colors were fragments, <0.5 mm and white/transparent, respectively. Polyethylene and polypropylene were the most common polymer types, indicating that recreational activities and fishing activities may be the main sources of MPs in the lake. The Pollution Load Index results indicated that MP pollution in the lake's water and sediments was at a moderate level.
Collapse
Affiliation(s)
- Memet Varol
- Malatya Turgut Özal University, Agriculture Faculty, Aquaculture Department, Malatya, Türkiye.
| | | | - Gülden Arısoy
- Elazığ Fisheries Research Institute, Elâzığ, Türkiye
| | - Burcu Çelik
- Elazığ Fisheries Research Institute, Elâzığ, Türkiye
| |
Collapse
|
4
|
Chiani MM, Rasta M, Taleshi MS, Elmi F. The role of organisms' size in microplastic pollution monitoring: Insights from Mytilaster lineatus and Amphibalanusimprovisus. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106863. [PMID: 39586222 DOI: 10.1016/j.marenvres.2024.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Marine organisms can serve as valuable bioindicators, providing insights into the spatial and temporal distribution of microplastics (MPs) in aquatic environments. While barnacles and mussels have shown promise as bioindicators of MP pollution in coastal environments, recent studies have questioned the efficacy of bivalves in this role. To address this, our research investigated the suitability of Mytilaster lineatus and Amphibalanus improvisus as biomonitors of MP pollution in the Caspian Sea through a comprehensive survey of these filter-feeding organisms. Sediment, seawater and organisms samples were collected from 9 stations during July to September 2022. MPs were detected in all compartments with an average of 0.57 ± 0.59 items/L for water, 72.66 ± 29.29 items/kg dry weight for sediment, 1.69 ± 0.79 items/individual or 7.96 ± 3.231 items/g wet weight (ww) for M. lineatus and 1.8 ± 0.9 items/individual or 35.18 ± 35.33 items/g ww for A. improvisus. MPs were prevailed by class 1000-3000 μm in size, black in color, fiber in shape and polyamide in polymer. The pollution load index (PLI) for seawater and sediment stations were 2.11 and 2.22, respectively, confirm low level risk of MP pollution at the sampling stations. There was a positive correlation between the MP abundance isolated from seawater and those extracted from the small species (p < 0.05). Bioconcentration factor (BCF) exhibited that both organisms absorbed and accumulated MPs from their surrounding water (BCF >1). A negative correlation was detected between the number of MPs extracted from organisms and their soft tissues (p < 0.01). Therefore, smaller individuals of M. lineatus and A. improvisus showed greater potential for biomonitoring. Our findings underscore the importance of species size in assessing MP pollution using biomonitors and recommend that future studies incorporate size-related variables for a more comprehensive understanding of MPs biomonitors.
Collapse
Affiliation(s)
- Mohammad Mehdi Chiani
- Department of Marine Chemistry, Faculty of Marine and Environmental Sciences, University of Mazandaran, Babolsar, Iran
| | - Majid Rasta
- College of Hydraulic and Environmental Engineering, Chine Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China
| | - Mojtaba S Taleshi
- Department of Marine Chemistry, Faculty of Marine and Environmental Sciences, University of Mazandaran, Babolsar, Iran.
| | - Fatemeh Elmi
- Department of Marine Chemistry, Faculty of Marine and Environmental Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
5
|
Shen M, Li Y, Qin L, Chen X, Ao T, Liang X, Jin K, Dou Y, Li J, Duan X. Distribution and risk assessment of microplastics in a source water reservoir, Central China. Sci Rep 2025; 15:468. [PMID: 39747382 PMCID: PMC11695635 DOI: 10.1038/s41598-024-84894-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
The current researches on microplastics in different water layers of reservoirs remains limited. This study aims to investigate the microplastics in different water layers within a source water reservoir. Results revealed that the abundance of microplastics ranged from 2.07 n/L to 14.28 n/L (reservoir, water) and 3 to 7.02 n/L (river, water), while varied from 350 to 714 n/kg(dw) (reservoir, sediment) and 299 to 1360 n/kg(dw) (river, sediment). The average abundance in surface, middle, and bottom water were 6.83 n/L, 6.30 n/L, and 6.91 n/L respectively. Transparent fibrous smaller than < 0.5 mm were identified as the predominant fraction with Polypropylene and Polyethylene being the prevalent polymer types. Additionally, the pollution load index, hazard index, and pollution risk index were calculated for different layers and sediments. Results showed that surface water exhibited a moderate level of risk while the sediments posed a low level of risk. Both the middle and bottom water showed elevated levels of risk due to higher concentrations of polymers with significant toxicity indices. This study presents novel findings on the distribution of microplastics in different water layers, providing crucial data support for understanding the migration patterns of microplastics in source water reservoirs and facilitating pollution prevention efforts.
Collapse
Affiliation(s)
- Minghui Shen
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yang Li
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Liwen Qin
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xudong Chen
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Tianyu Ao
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xishu Liang
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Kaibo Jin
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yanyan Dou
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Juexiu Li
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Xuejun Duan
- School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
6
|
Narwal N, Katyal D. The abundance and analytical characterization of microplastics in the surface water of Haryana, India. Microsc Res Tech 2025; 88:139-153. [PMID: 39222395 DOI: 10.1002/jemt.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Microplastic (MP) contamination has become a serious environmental concern that affects terrestrial environments, aquatic ecosystems, and human health. The current study assesses the presence, abundance, and morphology of MPs present in the surface water of Rohtak district, Haryana, India, which is rapidly undergoing industrialization. While the morphological studies of MPs were conducted through stereo microscopy and field emission-scanning electron microscopy (FE-SEM), the elemental composition of polymers was analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results revealed that the surface water was significantly contaminated by polyethylene, polypropylene, and polystyrene. Moreover, the abundance of MPs was found to be 16-28 particles/L with an average value of 23 particles/L. Most of the MPs had fibrous morphology with the specifics being, fibers (43.9%), fragments (23.7%), films (17%), and pellets (15.4%). The MPs exhibited a size range of 0.61-4.87 mm, with an average size measured at 2.03 ± 0.04 mm. Also, the MP pollution load index values for the surface water bodies were found to be below 10, indicating a low risk category. Though currently designated as "low risk," it is important that mitigation strategies be brought over at this juncture to further prevent the deterioration of quality of water. Thus, this study not only intends to bring forth the impact of human activities, industrial waste, open waste dumping, and inadequate municipal waste management practices on increasing MP concentration but also highlights the sustainable alternatives and strategies to address this emerging pollutant in urban water systems. For further prevention, the implementation of stringent regulations and on-site plastic waste segregation is a critical component in preventing the disposal of plastic waste in surface water bodies. RESEARCH HIGHLIGHTS: The abundance of MPs was found to be 16-28 particles/L, with an average value of 23 particles/L. The surface water bodies in Rohtak district fall into the hazard categories of low risk with values less than 10. The overall MP concentration in water, across all five areas, based on color was in order: white/transparent (39.1%), black (15%), gray (9.1%), green (8.7%), blue (7.8%), red (7.8%), orange (6.3%), and yellow (6.1%). The dominant polymers were polyethylene (PE) (42%) and polypropylene (41%) as determined by FTIR spectroscopy.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
7
|
Li X, Wang Z, Chen Y, Li Q. Polystyrene Microplastics Induce Photosynthetic Impairment in Navicula sp. at Physiological and Transcriptomic Levels. Int J Mol Sci 2024; 26:148. [PMID: 39796010 PMCID: PMC11720487 DOI: 10.3390/ijms26010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The rising concentration of microplastics (MPs) in aquatic environments poses increasing ecological risks, yet their impacts on biological communities remain largely unrevealed. This study investigated how aminopolystyrene microplastics (PS-NH2) affect physiology and gene expression using the freshwater alga Navicula sp. as the test species. After exposing Navicula sp. to high PS-NH2 concentrations for 24 h, growth was inhibited, with the most significant effect seen after 48 h. Increasing PS-NH2 concentrations reduced chlorophyll content, maximum photochemical quantum yield (Fv/Fm), and the photochemical quenching coefficient (Qp), while the non-photochemical quenching coefficient (NPQ) increased, indicating a substantial impact on photosynthesis. PS-NH2 exposure, damaged cell membrane microstructures, activated antioxidant enzymes, and significantly increased malondialdehyde (MDA), glutathione peroxidase (GPX), and superoxide dismutase (SOD) activities. Transcriptomic analysis revealed that PS-NH2 also affected the gene expression of Navicula sp. The differentially expressed genes (DEGs) are mainly related to porphyrin and chlorophyll metabolism, carbon fixation in photosynthesis, endocytosis, and glycolysis/gluconeogenesis. Protein-protein interaction (PPI) analysis revealed significant interactions among DEGs, particularly within photosystem II. These findings shed insights into the toxic mechanisms and environmental implications of microplastic interactions with phytoplankton, deepening our understanding of the potential adverse effects of microplastics in aquatic ecosystems.
Collapse
Affiliation(s)
- Xi Li
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (X.L.); (Z.W.)
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China
| | - Zunyan Wang
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (X.L.); (Z.W.)
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qi Li
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China; (X.L.); (Z.W.)
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China
| |
Collapse
|
8
|
Jiang J, He L, Liu J, Liu X, Huang J, Rong L. Experimental study of interception effect by submerged dam on microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135924. [PMID: 39321481 DOI: 10.1016/j.jhazmat.2024.135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Submerged dam can alter microplastic (MP) transport, and act as a sink for MPs. In this paper, we investigated the interception rates of Polyvinyl chloride (PVC) and Polystyrene (PS) by an artificial submerged dam in a flow flume at first, and found that most of the un-intercepted PVC and PS particles by the dam accumulated behind it under the subcritical (Fr < 1) and turbulent (Re > 500) flows. PVC particles behind the dam mainly concentrated within two dam widths, and the concentration of PS particles decreased with the distance behind the dam lengthening. Then, we performed linear regression fitting and Redundancy Analysis (RDA) between the interception rates collected in 162 experiment tests and environmental factors, including flow velocity, distance to dam and MP concentration. The results showed that the interception rate of PVC and PS particles increased with the distance to dam lengthening, but decreased with the flow velocity and MP concentration heightening. RDA revealed that the interception rate was influenced by flow velocity, distance to dam, and MP concentration from the most to the least. Our findings are believed to contribute to understanding the mechanism of the interception effect of submerged dam on microplastics.
Collapse
Affiliation(s)
- Jianhao Jiang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
| | - Lulu He
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology (Zhejiang University of Technology), Hangzhou 310023, China.
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology (Zhejiang University of Technology), Hangzhou 310023, China
| | - Xu Liu
- Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, Zhejiang, China
| | - Junbao Huang
- Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, Zhejiang, China
| | - Li Rong
- College of Foreign Languages, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
| |
Collapse
|
9
|
Rasta M, Khodadoust A, S Taleshi M, S Lashkaryan N, Shi X. Potential use of gammarus (Pontogammarus maeoticus) and shrimp (Palaemon elegans) as biomonitors of microplastics pollution in coastal environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124959. [PMID: 39278554 DOI: 10.1016/j.envpol.2024.124959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Microplastics (MPs) pose a significant threat to marine ecosystems, necessitating robust biomonitoring to assess aquatic risks and inform effective policymaking. In this study we investigated MPs pollution in gammarus (Pontogammarus maeoticus), shrimp (Palaemon elegans), sediment and water samples of southern coast of the Caspian Sea to assess the potential use of these two crustaceans as biomonitors of MPs pollution, bioconcentration of MPs in organisms' tissue and the pollution risks of MPs in environmental matrices. Samples were collected from 6 stations during June to August 2023. MPs were found in all compartments with an average of 100 ± 45.34 items/kg dry weight, 0.45 ± 0.06 items/L, 0.38 ± 0.21 items/individual or 0.58 ± 0.34 items/g wet weight (ww) and 0.26 ± 0.15 items/individual or 8.69 ± 7.88 items/g ww, for sediments, seawaters, P. elegans and P. maeoticus, respectively. MPs were prevailed by class 300-1000 μm in size, polyamide in polymer, fiber in shape and black in color. P. maeoticus and P. elegans did not meet the selection criteria as MPs biomonitors. However, bioconcentration factor (BCF) illustrated that both crustaceans can absorb and accumulate MPs from their surrounding water (BCF >1). Based on contamination factors (CF) values, sampling stations were polluted with MPs (1 ≤ CF < 6). The overall pollution load index (PLI) for sediment and seawater stations were 2.47 and 1.88, respectively, indicating minor contamination with MPs in the risk level I. Current research provides useful information on MPs pollution in crustaceans species and the risk level of MPs in environmental matrices that can be suitable for bioaccumulation hazard assessment and future monitoring programs.
Collapse
Affiliation(s)
- Majid Rasta
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| | - Ali Khodadoust
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran.
| | - Mojtaba S Taleshi
- Department of Marine Chemistry, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Niloofar S Lashkaryan
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| | - Xiaotao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
10
|
Jahan I, Chowdhury G, Baquero AO, Couetard N, Hossain MA, Mian S, Iqbal MM. Microplastics pollution in the Surma River, Bangladesh: A rising hazard to upstream water quality and aquatic life. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121117. [PMID: 38733848 DOI: 10.1016/j.jenvman.2024.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The ecological health of freshwater rivers is deteriorating globally due to careless human activities, for instance, the emission of plastic garbage into the river. The current research was the first assessment of microplastics (MPs) pollution in water, sediment, and representative organisms (fish, crustacean, and bivalve) from the Surma River. Water, sediment, and organisms were sampled from six river sites (Site 1: Charkhai; Site 2: Golapganj; Site 3: Alampur; Site 4: Kazir Bazar; Site 5: Kanishail and Site 6: Lamakazi), and major water quality parameters were recorded during sampling. Thereafter, MPs in water, sediment, and organism samples were extracted, and then microscopically examined to categorize selected MPs types. The abundance of MPs, as well as size, and color distribution, were estimated. Polymer types were analyzed by ATR-FTIR, the color loss of MPs was recorded, the Pollution Load Index (PLI) was calculated, and the relationship between MPs and water quality parameters was analyzed. Sites 4 and 5 had comparatively poorer water quality than other sites. Microplastic fibers, fragments, and microbeads were consistently observed in water, sediment, and organisms. A substantial range of MPs in water, sediment, and organisms (37.33-686.67 items/L, 0.89-15.12 items/g, and 0.66-48.93 items/g, respectively) was recorded. There was a diverse color range, and MPs of <200 μm were prevalent in sampling areas. Six polymer types were identified by ATR-FTIR, namely Polyethylene (PE), Polyamide (PA), Polypropylene (PP), Cellulose acetate (CA), Polyethylene terephthalate (PET), and Polystyrene (PS), where PE (41%) was recognized as highly abundant. The highest PLI was documented in Site 4 followed by Site 5 both in water and sediment. Likewise, Sites 4 and 5 were substantially different from other study areas according to PCA. Overall, the pervasiveness of MPs was evident in the Surma River, which requires further attention and prompt actions.
Collapse
Affiliation(s)
- Israt Jahan
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Gourab Chowdhury
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh; School of Science, Technology and Engineering, University of the Sunshine Coast, QLD 4556, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
| | - Andrea Osorio Baquero
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Nicolas Couetard
- Plastic@Sea, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur-mer, France
| | - Mohammad Amzad Hossain
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Coastal Marine Ecosystems Research Centre (CMERC), Central Queensland University, QLD 4680, Australia; School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton QLD 4701, Australia.
| | - Sohel Mian
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Laboratory of Aquatic Biodiversity and Ecophysiology, Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
11
|
Nejat N, Sattari M, Mohsenpour R, Shi X, Rasta M. Microplastics abundance, distribution and composition in surface waters, sediments and fish species from Amir-Kalayeh Wetland, Northern Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22024-22037. [PMID: 38400964 DOI: 10.1007/s11356-024-32627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Microplastics (MPs) pollution is considered as a globally pervasive threat to aquatic ecosystems and many studies reported this pollution in different aquatic ecosystems. However, studies on MPs pollution in wetlands are still scarce. Therefore, the aim of present study was to investigate the presence of MPs in the surface water, sediment and different fish species of Amir-Kalayeh wetland, Northern Ian. Surface water and sediment samples were collected from six stations during June to July 2022. Moreover, the gills and gastrointestinal tract (GIT) of 54 fish specimens belonging to four species including Cyprinus carpio, Tinca tinca, Esox lucius and Silurus glanis were analysed. MPs were detected in all samples with an average of 2.15 ± 1.98 items/m3 for surface water, 51.66 ± 32.20 items/kg dry weight for sediments, 0.17 ± 0.17 items/individual for fish GIT and 0.12 ± 0.12 items/individual for fish gills. There was no significant relationship between MPs abundance in surface waters and sediments as well as between MPs abundance in environmental matrices and fish (P > 0.0.5). In terms of feeding habit, no significant differences were observed between the number of MPs found in omnivorous and carnivorous fish species (P > 0.05). Moreover, no significant relationship was detected between the MPs abundance in fish tissues and body size (P > 0.05). MPs were mainly fibers, mostly transparent, and in a range size of 70-5000 µm. The dominant MPs type was nylon in all samples. This study will help increase our knowledge about MPs pollution in inland freshwater systems and suggests that management policies take essential steps to reduce this insidious problem in freshwater ecosystems.
Collapse
Affiliation(s)
- Narges Nejat
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Masoud Sattari
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
- Department of Marine Biology, The Caspian Sea Research Center, University of Guilan, Rasht, Iran
| | - Reza Mohsenpour
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Xiaotao Shi
- College of Hydraulic and Environmental Engineering, Chine Three Gorges University, Yichang, 443002, Hubei, China
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China
| | - Majid Rasta
- College of Hydraulic and Environmental Engineering, Chine Three Gorges University, Yichang, 443002, Hubei, China.
- Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
12
|
Mishra M, Sudarsan D, Santos CAG, da Silva RM, Beja SK, Paul S, Bhanja P, Sethy M. Current patterns and trends of microplastic pollution in the marine environment: A bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22925-22944. [PMID: 38416357 DOI: 10.1007/s11356-024-32511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Microplastics are pervasive in the natural environment and pose a growing concern for global health. Plastic waste in marine environments has emerged as a global issue, threatening not only marine biota but also human health due to its implications for the food chain. This study aims to discern the patterns and trends of research, specifically on Marine Microplastic Pollution (MMP), based on a bibliometric analysis of scientific publications from 2011 to 2022. The methodology utilized in this study comprises three stages: (a) creating a bibliographical dataset from Scopus by Elsevier and the Web of Science Core Collection by Clarivate Analytics, (b) analyzing current research (trends and patterns) using bibliometric analysis through Biblioshiny tool, and (c) examining themes and subthemes in MMP research (wastewater treatment, plastic ingestion, the Mediterranean Sea, microplastics pollution, microplastics in freshwater, microplastic ingestion, plastic pollution, and microplastic pollution in the marine environment). The findings reveal that during the studied period, the number of MMP publications amounted to 1377 articles, with an average citation per publication of 59.23 and a total citation count of 81,553. The most cited article was published in 2011, and since then, the number of publications on this topic has been increasing steadily. The author count stood at 5478, with 22 trending topics identified from the 1377 published titles. Between 2019 and 2022, the countries contributing most to the publication of MMP articles were China, the United States of America (USA), and the United Kingdom (UK). However, a noticeable shift in the origin of author countries was observed in the 2019-2022 timeframe, transitioning from a dominance by the USA and the UK to a predominance by China. In 2019, there was a substantial increase in the volume of publications addressing the topic of microplastics. The results show that the most prevalent themes and subthemes pertained to MMP in the Mediterranean Sea. The journals with the highest number of MMP articles published were the Marine Pollution Bulletin (253 articles) and Science of the Total Environment (190 articles). The analysis concludes that research on MMP remains prominent and appears to be increasing each year.
Collapse
Affiliation(s)
- Manoranjan Mishra
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, Odisha, India
| | - Desul Sudarsan
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Celso Augusto Guimarães Santos
- Department of Civil and Environmental Engineering, Federal University of Paraíba, João Pessoa, 58051-900, Paraíba, Brazil.
| | | | - Santosh Kumar Beja
- Department of Environmental Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Suman Paul
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089, Odisha, India
| | - Pragati Bhanja
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| | - Murtyunjya Sethy
- Department of Library and Information Science, Berhampur University, Berhampur, 760007, Odisha, India
| |
Collapse
|
13
|
Rasta M, Khodadoust A, Rahimibashar MR, Taleshi MS, Sattari M. Microplastic Pollution in the Gastrointestinal Tract and Gills of Some Teleost and Sturgeon Fish from the Caspian Sea, Northern Iran. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2453-2465. [PMID: 37530412 DOI: 10.1002/etc.5725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
The increasing microplastic pollution in the marine environment has raised global concern. The main risk of microplastics in aquatic ecosystem is their bioaccumulation in aquatic organisms. A few studies have reported microplastic pollution in the digestive system of Caspian Sea fish species, but there is no research on sturgeon species, nor on fish gills. We investigated the occurrence of microplastics in the gastrointestinal tract (GIT) and gills of 62 specimens belonging to four species including three teleosts (Cyprinus carpio, Rutilus kutum, and Chelon aurata) and one sturgeon (Acipenser persicus, a valuable endangered species) from the Caspian Sea between January and March 2022. Fish tissues were removed, exposed for 24 h to 10% KOH, and then dried on filter paper. Particles were observed under a stereomicroscope and analyzed by Raman microspectrometry, scanning electron microscopy, and energy-dispersive spectroscopy. A total of 91 microplastics were detected in the GIT (average of 1.46 ± 1.17 items/individual) and 63 microplastics in the gills (average of 1.01 ± 0.62 items/individual). A significant correlation was not found between the number of microplastics found in both tissues and fish body length, body weight, GIT weight, and gill weight (p > 0.05), except between microplastics isolated from gills and gill weight in C. carpio (rs = 0.707, p = 0.022). The abundance of microplastics in fish followed the order of A. persicus > C. aurata > R. kutum > C. carpio. The microplastics were in the size range of 45 to 5000 µm, with particles of 300 to 1000 µm being the most prevalent; 74.68% of the particles were shaped like fibers, 30.53% were red, and 70.6% were composed of nylon polymer. Environ Toxicol Chem 2023;42:2453-2465. © 2023 SETAC.
Collapse
Affiliation(s)
- Majid Rasta
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Ali Khodadoust
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | | | - Mojtaba S Taleshi
- Department of Marine Chemistry, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran
| | - Masoud Sattari
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
- Department of Marine Biology, The Caspian Sea Research Center, University of Guilan, Rasht, Iran
| |
Collapse
|
14
|
Islam MS, Karim MR, Islam MT, Oishi HT, Tasnim Z, Das H, Kabir AHME, Sekine M. Abundance, characteristics, and ecological risks of microplastics in the riverbed sediments around Dhaka city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162866. [PMID: 36924967 DOI: 10.1016/j.scitotenv.2023.162866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/06/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Microplastic (MP) pollution has become an escalating problem in Bangladesh due to its rapid urbanization, economic growth, and excessive use of plastics; however, data on MP pollution from fresh water resources in this country are limited. This study investigated microplastics pollution in riverbed sediments in the peripheral rivers of Dhaka, the capital of Bangladesh. Twenty-eight sediment samples were collected from the selected stations of the Buriganga, Turag, and Balu Rivers. Density separation and wet-peroxidation methods were employed to extract MP particles. Attenuated total reflectance-Fourier transform infrared spectroscopy was used to identify the polymers. The results indicated a medium-level abundance of MPs in riverbed sediment in comparison with the findings of other studies in freshwater sediments worldwide. Film shape, white and transparent color, and large-size (1-5 mm) MPs were dominant in the riverbed sediment. The most abundant polymers were polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). Pollution load index (PLI) values greater than 1 were observed, indicating that all sampling sites were polluted with MPs. An assessment of ecological risks, using the abundance, polymer types, and toxicity of MPs in the sediment samples, suggested a medium to very high ecological risk of MP pollution of the rivers. The increased abundance of MPs and the presence of highly hazardous polymers, namely; polyurethane, acrylonitrile butadiene styrene, polyvinyl chloride, epoxy resin, and polyphenylene sulfide, were associated with higher ecological risks. Scanning electron microscopy (SEM) analysis indicated that the MPs were subjected to weathering actions, reducing the size of MPs, which caused additional potential ecological hazards in these river ecosystems. This investigation provides baseline information on MP pollution in riverine freshwater ecosystems for further in-depth studies of risk assessment and developing strategies for controlling MP pollution in Bangladesh.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh.
| | - Md Rezaul Karim
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
| | - Md Tanvirul Islam
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, USA
| | - Humaira Tasnim Oishi
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
| | - Zarin Tasnim
- Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Gazipur 1704, Bangladesh
| | - Harinarayan Das
- Materials Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | - A H M Enamul Kabir
- Department of Civil & Environmental Engineering, Yamaguchi University, Tokiwadai, Ube, Yamaguchi, Japan
| | - Masahiko Sekine
- Department of Civil & Environmental Engineering, Yamaguchi University, Tokiwadai, Ube, Yamaguchi, Japan
| |
Collapse
|
15
|
Nguyen HT, Choi W, Kim EJ, Cho K. Microbial community niches on microplastics and prioritized environmental factors under various urban riverine conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157781. [PMID: 35926609 DOI: 10.1016/j.scitotenv.2022.157781] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) provide habitats to microorganisms in aquatic environments; distinct microbial niches have recently been elucidated. However, there is little known about the microbial communities on MPs under urban riverine conditions, in which environmental factors fluctuate. Therefore, this study investigated MP biofilm communities under various urban riverine conditions (i.e., organic content, salinity, and dissolved oxygen (DO) concentration) and evaluated the prioritized factors affecting plastisphere communities. Nine biofilm-forming reactors were operated under various environmental conditions. Under all testing conditions, biofilms grew on MPs with decreasing bacterial diversity. Interestingly, biofilm morphology and bacterial populations were driven by the environmental parameters. We found that plastisphere community structures were grouped according to the environmental conditions; organic content in the water was the most significant factor determining MP biofilm communities, followed by salinity and DO concentration. The principal plastisphere communities were Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes phyla. In-depth analyses of plastisphere communities revealed that biofilm-forming and plastic-degrading bacteria were the predominant microbes. In addition, potential pathogens were majorly discovered in the riverine waters with high organic content. Our results suggest that distinct plastisphere communities coexist with MP particles under certain riverine water conditions, implying that the varied MP biofilm communities may affect urban riverine ecology in a variety of ways.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Woodan Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Eun-Ju Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|