1
|
Mondal I, Groves M, Driver EM, Vittori W, Halden RU. Carcinogenic formaldehyde in U.S. residential buildings: Mass inventories, human health impacts, and associated healthcare costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173640. [PMID: 38825200 DOI: 10.1016/j.scitotenv.2024.173640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Formaldehyde, a human carcinogen, is formulated into building materials in the U.S. and worldwide. We used literature information and mass balances to obtain order-of-magnitude estimates of formaldehyde inventories in U.S. residential buildings as well as associated exposures, excess morbidity, and healthcare costs along with other economic ramifications. Use of formaldehyde in building materials dates to the 1940s and continues today unabated, despite its international classification in 2004 as a human carcinogen. Global production of formaldehyde was about 32 million metric tons (MMT) in 2006. In the U.S., 5.7 ± 0.05 to 7.4 ± 0.125 MMT of formaldehyde were produced annually from 2006 to 2022, with 65 ± 5 % of this mass (3.7 ± 0.03 to 4.8 ± 0.08 MMT) entering building materials. For a typical U.S. residential building constructed in 2022, we determined an average total mass of formaldehyde containing chemicals of 48.2 ± 10.1 kg, equivalent to 207 ± 40 g of neat formaldehyde per housing unit. When extrapolated to the entire U.S. housing stock, this equates to 29,800 ± 5760 metric tons of neat formaldehyde. If the health threshold in indoor air of 0.1 mg/m3 is never surpassed in a residential building, safe venting of embedded formaldehyde would take years. Using reported indoor air exceedances, up to 645 ± 33 excess cancer cases may occur U.S. nationwide annually generating up to US$65 M in cancer treatment costs alone, not counting ~16,000 ± 1000 disability adjusted life-years. Other documents showed health effects of formaldehyde exist, but could not be quantified reliably, including sick building syndrome outcomes such as headache, asthma, and various respiratory illnesses. Opportunities to improve indoor air exposure assessments are discussed with special emphasis on monitoring of building wastewater. Safer alternatives to formaldehyde in building products exist and are recommended for future use.
Collapse
Affiliation(s)
- Indrayudh Mondal
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America; School of Sustainable Engineering and the Built Environment, 660 S College Ave, Tempe, AZ 85281, United States of America
| | - Megan Groves
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Erin M Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America
| | - Wendy Vittori
- Health Product Declaration Collaborative, 401 Edgewater Place, Suite 600, Wakefield, MA 01880, United States of America
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Building B, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281-8101, United States of America.
| |
Collapse
|
2
|
Jin A, Holm RH, Smith T, DuPré N, Kavalukas S. Does Wastewater Analysis Play a Role in Tracking Colorectal Cancer Hot Spots to Guide Geotargeted Neighborhood Interventions? ACS ES&T WATER 2024; 4:3623-3625. [PMID: 39600559 PMCID: PMC11588027 DOI: 10.1021/acsestwater.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Affiliation(s)
- Allie Jin
- Department of Surgery, School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| | - Rochelle H Holm
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Natalie DuPré
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky 40202, United States
| | - Sandra Kavalukas
- Department of Surgery, School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
3
|
Adhikari S, Kumar R, Driver EM, Bowes DA, Ng KT, Sosa-Hernandez JE, Oyervides-Muñoz MA, Melchor-Martínez EM, Martínez-Ruiz M, Coronado-Apodaca KG, Smith T, Bhatnagar A, Piper BJ, McCall KL, Parra-Saldivar R, Barron LP, Halden RU. Occurrence of Z-drugs, benzodiazepines, and ketamine in wastewater in the United States and Mexico during the Covid-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159351. [PMID: 36243065 PMCID: PMC9595400 DOI: 10.1016/j.scitotenv.2022.159351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 05/21/2023]
Abstract
Z-drugs, benzodiazepines and ketamine are classes of psychotropic drugs prescribed for treating anxiety, sleep disorders and depression with known side effects including an elevated risk of addiction and substance misuse. These drugs have a strong potential for misuse, which has escalated over the years and was hypothesized here to have been exacerbated during the COVID-19 pandemic. Wastewater-based epidemiology (WBE) constitutes a fast, easy, and relatively inexpensive approach to epidemiological surveys for understanding the incidence and frequency of uses of these drugs. In this study, we analyzed wastewater (n = 376) from 50 cities across the United States and Mexico from July to October 2020 to estimate drug use rates during a pandemic event. Both time and flow proportional composite and grab samples of untreated municipal wastewater were analyzed using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry to determine loadings of alprazolam, clonazepam, diazepam, ketamine, lorazepam, nordiazepam, temazepam, zolpidem, and zaleplon in raw wastewater. Simultaneously, prescription data of the aforementioned drugs were extracted from the Medicaid database from 2019 to 2021. Results showed high detection frequencies of ketamine (90 %), lorazepam (87 %), clonazepam (76 %) and temazepam (73 %) across both Mexico and United States and comparatively lower detection frequencies for zaleplon (22 %), zolpidem (9 %), nordiazepam (<1 %), diazepam (<1 %), and alprazolam (<1 %) during the pandemic. Average mass consumption rates, estimated using WBE and reported in units of mg/day/1000 persons, ranged between 62 (temazepam) and 1100 (clonazepam) in the United States. Results obtained from the Medicaid database also showed a significant change (p < 0.05) in the prescription volume between the first quarter of 2019 (before the pandemic) and the first quarter of 2021 (pandemic event) for alprazolam, clonazepam and lorazepam. Study results include the first detections of zaleplon and zolpidem in wastewater from North America.
Collapse
Affiliation(s)
- Sangeet Adhikari
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85281, AZ, USA; Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA
| | - Rahul Kumar
- Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA
| | - Erin M Driver
- Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA
| | - Devin A Bowes
- Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA
| | - Keng Tiong Ng
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Juan Eduardo Sosa-Hernandez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Karina G Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Ted Smith
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, KY 40202, USA
| | - Brian J Piper
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; Center for Pharmacy Innovation and Outcomes, Forty Fort, PA 18704, USA
| | | | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; MARTEC, Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Leon P Barron
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Rolf U Halden
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe 85281, AZ, USA; Biodesign Center for the Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe 85281, AZ, USA; OneWaterOneHealth, Nonprofit Project of the Arizona State University Foundation, Tempe, AZ 85287, USA; Global Futures Laboratory, Arizona State University, 800 S. Cady Mall, Tempe, AZ 85281, USA.
| |
Collapse
|