1
|
Zeng L, Ma J, Yang J, Yang J, Zeng X, Zhou Y. Ball milling nano-sized biochar: bibliometrics, preparation, and environmental application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52724-52739. [PMID: 39190254 DOI: 10.1007/s11356-024-34777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Nano-sized biochar, which is a small structure prepared from biochar by grinding, has surpassed traditional biochar in performance, showing enhanced effects and potential for a wide range of environmental applications. Firstly, this paper visualizes and analyzes the literature in this field by CiteSpace to clarify the development trend of nano-sized biochar. The review intuitively shows the most influential countries, the most productive institutions, and the most concerned hot spots in the field of nano-sized biochar. Secondly, these hotspots in environment management are summarized by keywords and clustering: (1) The application of ball milling is a modification scheme that researchers have paid attention to, and it is also a key method for preparing biochar nanomaterials. It has a more dispersed structure and can support more modified materials. (2) Nano-sized biochar in the comprehensive utilization of water, soil, and plants was discussed and is a small range of application modification methods. (3) The bidirectional effects of nano-sized biochar on plants were analyzed, and the challenges in its application were listed. Finally, the economic management of nano-sized biochar and the relationship between microorganisms are the focus of the next research.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiezhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha City, 410013, Hunan Province, China
| | - Jie Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiangzhou Zeng
- Huaihua Ecological Environment Bureau, Huaihua, 418000, Hunan Province, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
2
|
Kuang X, Li J, Ouyang Z, Huang H, Chen J, Chen X, Li L. Ca-Mg modified attapulgite for phosphate removal and its potential as phosphate-based fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120727. [PMID: 38555844 DOI: 10.1016/j.jenvman.2024.120727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
The urgent concerns of controlling water body eutrophication and the alleviating phosphorus shortage have led to an urgent need for action. The removal of phosphate from polluted waters and its reuse are essential for the prevention of eutrophication and for the sustainable utilization of phosphate resources. In this study, modified attapulgite with different Ca:Mg molar ratios was synthesized to facilitate the recovery of phosphate, with subsequent use of soil fertilizer. Ca-Mg modified attapulgite with the optimal ratio (ACM-5:3) exhibited an exceptional adsorption quality, achieving a maximum adsorption capacity of 63.2 mg/g. The pseudo-second-order model and Langmuir model could well describe the adsorption kinetics and isotherms, respectively. The adsorption mechanism analyses suggested that the interaction between ACM-5:3 and phosphate depended mainly on ion exchange and electrostatic attraction. Moreover, phosphate-laden-ACM-5:3 demonstrated a significant potential as a phosphorus-releasing fertilizer. It could promote corn growth by ensuring a continuous supply of phosphorus and minimizing phosphorus runoff losses. The above results suggested that ACM-5:3 was a potential adsorbent for efficient phosphate removal and recovery.
Collapse
Affiliation(s)
- Xiaotong Kuang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jing Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China; Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Zhu Ouyang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| | - Jingjing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Xingtong Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Linlong Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| |
Collapse
|
3
|
Viana RDSR, Figueiredo CCD, Chagas JKM, Paz-Ferreiro J. Combined use of biochar and phosphate rocks on phosphorus and heavy metal availability: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120204. [PMID: 38278116 DOI: 10.1016/j.jenvman.2024.120204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Biochar (BC) and phosphate rocks (PR) are alternative nutrient sources with multiple benefits for sustainable agriculture. The combination of these soil amendments serves two main purposes: to increase soil phosphorus (P) availability and to remediate heavy metal (HM) contamination. However, a further demonstration of the benefits and risks associated with the combined use of BC and PR (BC + PR) is needed, considering the specific characteristics of raw materials, soil types, experimental conditions, and climatic contexts. This meta-analysis is based on data from 28 selected studies, including 581 paired combinations evaluating effects on extraction and fractionation of cadmium (Cd) and lead (Pb), and 290 paired combinations for soil labile and non-labile P. The results reveal that BC, PR, and BC + PR significantly increase soil labile and non-labile P, with BC + PR showing a 150% greater increase compared to BC alone. In tropical regions, substantial increases in P levels were observed with BC, PR, and BC + PR exhibiting increments of 317, 798, and 288%, respectively. In contrast, temperate climate conditions showed lower increases, with BC, PR, and BC + PR indicating 54, 123, and 88% rises in soil P levels. Moreover, BC, PR, and BC + PR effectively reduce the bioavailability of Cd and Pb in soil, with BC + PR demonstrating the highest efficacy in immobilizing Cd. The synergistic effect of BC + PR highlights their potential for Cd remediation. BC + PR effectively reduces the exchangeable fraction of Cd and Pb in soil, leading to their immobilization in more stable forms, such as the residual fraction. This study provides valuable insights into the remediation potential and P management benefits of BC and PR, highlighting their importance for sustainable agriculture and soil remediation practices.
Collapse
Affiliation(s)
| | | | - Jhon Kenedy Moura Chagas
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil
| | - Jorge Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Proshad R, Li J, Sun G, Zheng X, Yue H, Chen G, Zhang S, Li Z, Zhao Z. Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13155-13174. [PMID: 38243026 DOI: 10.1007/s11356-024-32015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Li
- CCTEG Chongqing Engineering (Group) Co., LTD., Chongqing, 400000, People's Republic of China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Sun D, Li M, Fu Y, Pan Z, Cui R, Wang D, Zhang M, Yao W. Selective Separation of Chalcopyrite from Pyrite Using Sodium Humate: Flotation Behavior and Adsorption Mechanism. ACS OMEGA 2023; 8:45129-45136. [PMID: 38046350 PMCID: PMC10688209 DOI: 10.1021/acsomega.3c07539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Flotation separation of chalcopyrite from pyrite using lime or cyanides as depressants results in serious problems, such as the blockage of pipelines and environmental pollution. Eco-friendly organics are a future trend for beneficiation plants. In this research, the eco-friendly organic depressant sodium humate (SH) was chosen as a depressant to separate chalcopyrite from pyrite by flotation. The results indicated that SH could selectively depress pyrite owing to the oxidation species (FeOOH, Fe2(SO4)3) on its surface. The oxidation species were the adsorption sites for the COO- in the SH structure and impeded the subsequent collector potassium ethyl xanthate (KEX) adsorption. However, chalcopyrite was slightly oxidized with fewer oxidation species for SH adsorption, and KEX could be adsorbed and functioned effectively. This research suggested that SH could be an effective and eco-friendly depressant in chalcopyrite-pyrite flotation separation, which had potential use in the industry.
Collapse
Affiliation(s)
- Da Sun
- School
of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
- Hubei
Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic
Mineral Resources, Wuhan 430081, People’s
Republic of China
- Wuhan
Kaisheng Technology Co., Ltd., Wuhan 430070, People’s Republic of China
| | - Maolin Li
- School
of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
- Hubei
Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic
Mineral Resources, Wuhan 430081, People’s
Republic of China
- Changsha
Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, People’s Republic of China
| | - Yingying Fu
- School
of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
- Hubei
Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic
Mineral Resources, Wuhan 430081, People’s
Republic of China
| | - Zhiqin Pan
- School
of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
- Hubei
Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic
Mineral Resources, Wuhan 430081, People’s
Republic of China
| | - Rui Cui
- School
of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
- Hubei
Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic
Mineral Resources, Wuhan 430081, People’s
Republic of China
| | - Daowei Wang
- Department
of Chemical and Materials Engineering, University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ming Zhang
- School
of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
- Hubei
Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic
Mineral Resources, Wuhan 430081, People’s
Republic of China
| | - Wei Yao
- School
of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
- Hubei
Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic
Mineral Resources, Wuhan 430081, People’s
Republic of China
| |
Collapse
|