1
|
Zhu H, Guo Z, Yu W, Yuan S, Shen L, Zhao DL, Lin H. Illuminating for purity: Photocatalytic and photothermal membranes for sustainable oil-water separation. WATER RESEARCH 2025; 272:122919. [PMID: 39671864 DOI: 10.1016/j.watres.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The integration of photocatalytic and photothermal materials with oil-water separation membranes marks a significant advancement in sustainable separation technologies. These hybrid membranes exhibit exceptional functionalities, including resistance to oil fouling, self-cleaning, antibacterial properties, and reduced oil viscosity. Based on their reaction mechanisms, current photocatalytic and photothermal membranes are categorized into four types, i.e., photocatalytic membranes, photo-Fenton membranes, PMS-assisted photocatalytic membranes, and photothermal membranes. Under light irradiation, photocatalytically functionalized membranes generate reactive oxygen species (ROS) that degrade organic pollutants and inactivate bacteria on the membrane surfaces, enabling in-situ cleaning and regeneration. In addition to the above benefits, photothermal membranes achieve reduction of oil viscosity for higher membrane permeation and removal of light oil from membrane surfaces through light-induced heating. This review first explores the mechanisms underlying light-driven advanced oxidation processes (AOPs) and photothermal effects, followed by an in-depth discussion on the fabrication methods of these membranes. Additionally, the applications of photocatalytic and photothermal membranes in oil-water separation are examined, with an emphasis on how the photocatalytic and photothermal materials contribute to membrane functionality. Finally, this review presents the challenges currently faced by photocatalytic and photothermal membranes and outlines future research directions.
Collapse
Affiliation(s)
- Hongyuan Zhu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China.
| | - Zhenyu Guo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China.
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China.
| | - Shasha Yuan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua China.
| |
Collapse
|
2
|
Es'hagi M, Farbodi M, Gharbani P, Ghasemi E, Jamshidi S, Majdan-Cegincara R, Mehrizad A, Seyyedi K, Shahverdizadeh GH. A comparative review on the mitigation of metronidazole residues in aqueous media using various physico-chemical technologies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7294-7310. [PMID: 39469862 DOI: 10.1039/d4ay01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In the last few decades, pharmaceuticals have emerged as a new class of serious environmental pollutants. The presence of these emerging contaminants even in minimal amounts (micro- to nanograms) has side effects, and they can cause chronic toxicity to health and the environment. Furthermore, the presence of pharmaceutical contaminants in water resources leads to significant antibiotic resistance in bacteria. Hence, the removal of antibiotics from water resources is essential. Thus far, a wide range of methods, including adsorption, photodegradation, oxidation, photolysis, micro-/nanofiltration, and reverse osmosis, has been used to remove pharmaceutical contaminants from water systems. In this article, research related to the processes for the removal of metronidazole antibiotics from water and wastewater, including adsorption (carbon nanotubes (CNTs), magnetic nanocomposites, magnetic molecularly imprinted polymer (MMIP), and metal-organic frameworks), filtration, advanced oxidation processes (photocatalytic process, electrochemical advanced oxidation processes, sonolysis and sonocatalysis) and aqueous two-phase systems (ATPSs), was reviewed. Results reveal that advanced oxidation processes, especially photocatalytic and sonolysis processes, have high potential in removing MNZ (more than 90%).
Collapse
Affiliation(s)
- Moosa Es'hagi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Maryam Farbodi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Parvin Gharbani
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
- Department of Chemistry, Islamic Azad University, Ahar Branch, Ahar, Iran.
| | - Elnaz Ghasemi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sona Jamshidi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Roghayeh Majdan-Cegincara
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Ali Mehrizad
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Kambiz Seyyedi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Gholam Hossein Shahverdizadeh
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| |
Collapse
|
3
|
Rokicka-Konieczna P, Morawski AW. Photocatalytic Bacterial Destruction and Mineralization by TiO 2-Based Photocatalysts: A Mini Review. Molecules 2024; 29:2221. [PMID: 38792082 PMCID: PMC11123885 DOI: 10.3390/molecules29102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This work presents an overview of the reports on the bacterial cell photocatalytic destruction and mineralization process in the presence of TiO2-based photocatalysts. The presented research included experiments conducted in air and water. Numerous works confirmed that a photocatalytic process with TiO2 led to bacteria and their organic residues' mineralization. Additionally, based on the obtained results, a possible two-stage mechanism of photocatalytic mineralization in the presence of TiO2-based materials was proposed. To help future studies, challenges of photocatalytic microorganism mineralization are also proposed. There are some aspects that need to be addressed, such as the lack of standardization of conducted research or relatively small amount of research on photocatalytic microorganism mineralization. According to our best knowledge, in the available literature, no work regarding a summary of previous research on photocatalytic bacterial mineralization process was found.
Collapse
Affiliation(s)
- Paulina Rokicka-Konieczna
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| | | |
Collapse
|
4
|
Nguyen MK, Lin C, Bui XT, Rakib MRJ, Nguyen HL, Truong QM, Hoang HG, Tran HT, Malafaia G, Idris AM. Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state-of-the-art removal. CHEMOSPHERE 2024; 354:141678. [PMID: 38485003 DOI: 10.1016/j.chemosphere.2024.141678] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Pharmaceutical active compound (PhAC) residues are considered an emerging micropollutant that enters the aquatic environment and causes harmful ecotoxicity. The significant sources of PhACs in the environment include the pharmaceutical industry, hospital streams, and agricultural wastes (animal husbandry). Recent investigations demonstrated that wastewater treatment plants (WWTPs) are an important source of PhACs discharging ecosystems. Several commonly reported that PhACs are detected in a range level from ng L-1 to μg L-1 concentration in WWTP effluents. These compounds can have acute and chronic adverse impacts on natural wildlife, including flora and fauna. The approaches for PhAC removals in WWTPs include bioremediation, adsorption (e.g., biochar, chitosan, and graphene), and advanced oxidation processes (AOPs). Overall, adsorption and AOPs can effectively remove PhACs from wastewater aided by oxidizing radicals. Heterogeneous photocatalysis has also proved to be a sustainable solution. Bioremediation approaches such as membrane bioreactors (MBRs), constructed wetlands (CWs), and microalgal-based systems were applied to minimize pharmaceutical pollution. Noteworthy, applying MBRs has illustrated high removal efficiencies of up to 99%, promising prospective future. However, WWTPs should be combined with advanced solutions, e.g., AOPs/photodegradation, microalgae-bacteria consortia, etc., to treat and minimize their accumulation. More effective and novel technologies (e.g., new generation bioremediation) for PhAC degradation must be investigated and specially designed for a low-cost and full-scale. Investigating green and eco-friendly PhACs with advantages, e.g., low persistence, no bioaccumulation, less or non-toxicity, and environmentally friendly, is also necessary.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Md Refat Jahan Rakib
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Quoc-Minh Truong
- Faculty of Management Science, Thu Dau Mot University, Binh Duong 75000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
5
|
Vijay Pradhap Singh M, Ravi Shankar K. Next-generation hybrid technologies for the treatment of pharmaceutical industry effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120197. [PMID: 38301475 DOI: 10.1016/j.jenvman.2024.120197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Water and industries are intangible units of the globe that are always set to meet the population's demand. The global population depends on one-third of freshwater increasing the demand. The increase in population along with urbanization has polluted the fresh water resources. The pharmaceutical industry is marked as an emerging contaminant of water pollution. The most common type of pharmaceutical drugs that are detected in the environment includes antibiotics, analgesics, NSAIDs, and pain-relieving drugs. These drugs alter the food chain of the organisms causing chaos mainly in the marine ecosystem. Pharmaceutical drugs are found only in shallow amounts (ng/mg) they have a huge impact on the living system. The consumption of water contaminated with pharmaceutical ingredients can disrupt reproduction, hormonal imbalance, cancer, and respiratory problems. Various methods are used to remove these chemicals from the environment. In this review, we mainly focused on the emerging hybrid technologies and their significance in the effective treatment of pharmaceutical wastewater. This review paper primarily elaborates on the merits and demerits of existing conventional technologies helpful in developing integrated technologies for the modern era of pharmaceutical effluent treatment. This review paper further in detail discusses the various strategies of eco-friendly bioremediation techniques namely biostimulation, bioaugmentation, bacterial degradation, mycoremediation, phytoremediation, and others for the ultimate removal of pharmaceutical contaminants in wastewater. The review makes clear that targeted and hybrid solutions are what the world will require in the future to get rid of these pharmacological prints.
Collapse
Affiliation(s)
- M Vijay Pradhap Singh
- Department of Biotechnology, Vivekanandha College of Engineering for Women (Autonomous), Namakkal, Elayampalayam, Tiruchengode, Tamil Nadu, 637 205, India.
| | - K Ravi Shankar
- Department of Biotechnology, University College of Engineering, Anna University-BIT Campus, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
6
|
Stepanova A, Tite T, Ivanenko I, Enculescu M, Radu C, Culita DC, Rostas AM, Galca AC. TiO 2 Phase Ratio's Contribution to the Photocatalytic Activity. ACS OMEGA 2023; 8:41664-41673. [PMID: 37970036 PMCID: PMC10634250 DOI: 10.1021/acsomega.3c05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Photocatalysis is one of the approaches for solving environmental issues derived from extremely harmful pollution caused by industrial dyes, medicine, and heavy metals. Titanium dioxide is among the most promising photocatalytic semiconductors; thus, in this work, TiO2 powders were prepared by a hydrothermal synthesis using titanium tetrachloride TiCl4 as a Ti source. The effect of the hydrochloric acid (HCl) concentration on TiO2 formation was analyzed, in which a thorough morpho-structural analysis was performed employing different analysis methods like XRD, Raman spectroscopy, SEM/TEM, and N2 physisorption. EPR spectroscopy was employed to characterize the paramagnetic defect centers and the photogeneration of reactive oxygen species. Photocatalytic properties were tested by photocatalytic degradation of the rhodamine B (RhB) dye under UV light irradiation and using a solar simulator. The pH value directly influenced the formation of the TiO2 phases; for less acidic conditions, the anatase phase of TiO2 crystallized, with a crystallite size of ≈9 nm. Promising results were observed for TiO2, which contained 76% rutile, showing a 96% degradation of RhB under the solar simulator and 91% under UV light after 90 min irradiation, and the best result showed that the sample with 67% of the anatase phase after 60 min irradiation under the solar simulator had a 99% degradation efficiency.
Collapse
Affiliation(s)
- Anna Stepanova
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Teddy Tite
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Iryna Ivanenko
- National
Technical University of Ukraine Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Monica Enculescu
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Cristian Radu
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Daniela Cristina Culita
- Institute
of Physical Chemistry Ilie Murgulescu, Romanian Academy, Bucharest 060021, Romania
| | - Arpad Mihai Rostas
- National
Institute of Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania
| | | |
Collapse
|
7
|
Alisiyonak O, Lavitskaya A, Khoroshko L, Kozlovskiy AL, Zdorovets M, Korolkov I, Yauseichuk M, Kaniukov E, Shumskaya A. Breathable Films with Self-Cleaning and Antibacterial Surfaces Based on TiO 2-Functionalized PET Membranes. MEMBRANES 2023; 13:733. [PMID: 37623794 PMCID: PMC10456517 DOI: 10.3390/membranes13080733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
A promising approach that uses the sol-gel method to manufacture new breathable active films with self-cleaning and antibacterial surfaces is based on the PET membranes obtained via ion track technology with a pore density of 10-7 cm-2 and a pore diameter of about 500 ± 15 nm, coated with a layer of TiO2 anatase, with a thickness of up to 80 nm. The formation of the photocatalytically active TiO2 anatase phase was confirmed using Raman analysis. Coating the PET membrane with a layer of TiO2 increased the hydrophobicity of the system (CA increased from 64.2 to 92.4, and the antibacterial activity was evaluated using Escherichia coli and Staphylococcus aureus bacteria with the logarithmic reduction factors of 3.34 and 4.24, respectively).
Collapse
Affiliation(s)
- Olga Alisiyonak
- Faculty of Chemical Technology and Engineering, Belarusian State Technological University, 13a Sverdlova Str., 220006 Minsk, Belarus
| | - Anna Lavitskaya
- Faculty of Chemical Technology and Engineering, Belarusian State Technological University, 13a Sverdlova Str., 220006 Minsk, Belarus
| | - Liudmila Khoroshko
- Faculty of Physics, Belarusian State University, 4 Nezavisimosti Av., 220030 Minsk, Belarus
- R&D Department, Belarusian State University of Informatics and Radioelectronics, 6 P. Browka Str., 220013 Minsk, Belarus
| | - Artem L. Kozlovskiy
- Engineering Profile Laboratory, Gumilyov Eurasian National University, 11 Satpaeva Str., Nur-Sultan 010000, Kazakhstan
- The Institute of Nuclear Physics, 1 Ibragimova Str., Almaty 050032, Kazakhstan
| | - Maxim Zdorovets
- Engineering Profile Laboratory, Gumilyov Eurasian National University, 11 Satpaeva Str., Nur-Sultan 010000, Kazakhstan
- The Institute of Nuclear Physics, 1 Ibragimova Str., Almaty 050032, Kazakhstan
| | - Ilya Korolkov
- Engineering Profile Laboratory, Gumilyov Eurasian National University, 11 Satpaeva Str., Nur-Sultan 010000, Kazakhstan
- The Institute of Nuclear Physics, 1 Ibragimova Str., Almaty 050032, Kazakhstan
| | - Maryia Yauseichuk
- Faculty of Physics, Belarusian State University, 4 Nezavisimosti Av., 220030 Minsk, Belarus
- R&D Department, Belarusian State University of Informatics and Radioelectronics, 6 P. Browka Str., 220013 Minsk, Belarus
| | - Egor Kaniukov
- Department of Materials Technology of Electronics, National University of Science and Technology, “MISIS”, Leninsky Av. 4, Moscow 119049, Russia;
| | - Alena Shumskaya
- Institute of Chemistry of New Materials, 36 F. Skaryna Str., 220141 Minsk, Belarus
| |
Collapse
|
8
|
El-Sayyad GS, Elfadil D, Gaballah MS, El-Sherif DM, Abouzid M, Nada HG, Khalil MS, Ghorab MA. Implication of nanotechnology to reduce the environmental risks of waste associated with the COVID-19 pandemic. RSC Adv 2023; 13:12438-12454. [PMID: 37091621 PMCID: PMC10117286 DOI: 10.1039/d3ra01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
The COVID-19 pandemic is the largest global public health outbreak in the 21st century so far. It has contributed to a significant increase in the generation of waste, particularly personal protective equipment and hazardous medical, as it can contribute to environmental pollution and expose individuals to various hazards. To minimize the risk of infection, the entire surrounding environment should be disinfected or neutralized regularly. Effective medical waste management can add value by reducing the spread of COVID-19 and increasing the recyclability of materials instead of sending them to landfill. Developing an antiviral coating for the surface of objects frequently used by the public could be a practical solution to prevent the spread of virus particles and the inactivation of virus transmission. Relying on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to address this emergency. Here, through a multidisciplinary perspective encompassing various fields such as virology, biology, medicine, engineering, chemistry, materials science, and computer science, we describe how nanotechnology-based strategies can support the fight against COVID-19 well as infectious diseases in general, including future pandemics. In this review, the design of the antiviral coating to combat the spread of COVID-19 was discussed, and technological attempts to minimize the coronavirus outbreak were highlighted.
Collapse
Affiliation(s)
- Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU) Giza Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca Morocco
| | - Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University Beijing 100083 PR China
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences Rokietnicka 3 St. 60-806 Poznan Poland
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF) Cairo Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences Rokietnicka 3 St. 60-806 Poznan Poland
- Doctoral School, Poznan University of Medical Sciences 60-812 Poznan Poland
| | - Hanady G Nada
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Department of Microbiology, Faculty of Science, Ain Shams University Cairo Egypt
| | - Mohamed S Khalil
- Agricultural Research Center, Central Agricultural Pesticides Laboratory Alexandria Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
9
|
Nanomaterials Aspects for Photocatalysis as Potential for the Inactivation of COVID-19 Virus. Catalysts 2023. [DOI: 10.3390/catal13030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
Coronavirus disease-2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is the most difficult recent global outbreak. Semiconducting materials can be used as effective photocatalysts in photoactive technology by generating various reactive oxidative species (ROS), including superoxide (•O2−) and hydroxyl (•OH) radicals, either by degradation of proteins, DNA, and RNA or by inhibition of cell development through terminating the cellular membrane. This review emphasizes the capability of photocatalysis as a reliable, economical, and fast-preferred method with high chemical and thermal stability for the deactivation and degradation of SARS-CoV-2. The light-generated holes present in the valence band (VB) have strong oxidizing properties, which result in the oxidation of surface proteins and their inactivation under light illumination. In addition, this review discusses the most recent photocatalytic systems, including metals, metal oxides, carbonaceous nanomaterials, and 2-dimensional advanced structures, for efficient SARS-CoV-2 inactivation using different photocatalytic experimental parameters. Finally, this review article summarizes the limitations of these photocatalytic approaches and provides recommendations for preserving the antiviral properties of photocatalysts, large-scale treatment, green sustainable treatment, and reducing the overall expenditure for applications.
Collapse
|
10
|
Goh PS, Samavati Z, Ismail AF, Ng BC, Abdullah MS, Hilal N. Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:448. [PMID: 36770409 PMCID: PMC9920479 DOI: 10.3390/nano13030448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 05/27/2023]
Abstract
Membrane technology has become increasingly popular and important for separation processes in industries, as well as for desalination and wastewater treatment. Over the last decade, the merger of nanotechnology and membrane technology in the development of nanocomposite membranes has emerged as a rapidly expanding research area. The key motivation driving the development of nanocomposite membranes is the pursuit of high-performance liquid separation membranes that can address the bottlenecks of conventionally used polymeric membranes. Nanostructured materials in the form of zero to three-dimensions exhibit unique dimension-dependent morphology and topology that have triggered considerable attention in various fields. While the surface hydrophilicity, antibacterial, and photocatalytic properties of TiO2 are particularly attractive for liquid separation membranes, the geometry-dependent properties of the nanocomposite membrane can be further fine-tuned by selecting the nanostructures with the right dimension. This review aims to provide an overview and comments on the state-of-the-art modifications of liquid separation membrane using TiO2 as a classical example of multidimensional nanomaterials. The performances of TiO2-incorporated nanocomposite membranes are discussed with attention placed on the special features rendered by their structures and dimensions. The innovations and breakthroughs made in the synthesis and modifications of structure-controlled TiO2 and its composites have enabled fascinating and advantageous properties for the development of high-performance nanocomposite membranes for liquid separation.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zahra Samavati
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|