1
|
Leppanen MT, Sourisseau S, Burgess RM, Simpson SL, Sibley P, Jonker MTO. Sediment Toxicity Tests: A Critical Review of Their use in Environmental Regulations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1697-1716. [PMID: 38597781 PMCID: PMC11326746 DOI: 10.1002/etc.5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Sediments are an integral component of aquatic systems, linking multiple water uses, functions, and services. Contamination of sediments by chemicals is a worldwide problem, with many jurisdictions trying to prevent future pollution (prospective) and manage existing contamination (retrospective). The present review assesses the implementation of sediment toxicity testing in environmental regulations globally. Currently, the incorporation of sediment toxicity testing in regulations is most common in the European Union (EU), North America, and Australasian regions, with some expansion in Asia and non-EU Europe. Employing sediment toxicity testing in prospective assessments (i.e., before chemicals are allowed on the market) is most advanced and harmonized with pesticides. In the retrospective assessment of environmental risks (i.e., chemicals already contaminating sediments), regulatory sediment toxicity testing practices are applied inconsistently on the global scale. International harmonization of sediment toxicity tests is considered an asset and has been successful through the widespread adoption and deployment of Organisation for Economic Co-operation and Development guidelines. On the other hand, retrospective sediment assessments benefit from incorporating regional species and protocols. Currently used toxicity testing species are diverse, with temperate species being applied most often, whereas test protocols are insufficiently flexible to appropriately address the range of environmental contaminants, including nanomaterials, highly hydrophobic contaminants, and ionized chemicals. The ever-increasing and -changing pressures placed on aquatic resources are a challenge for protection and management efforts, calling for continuous sediment toxicity test method improvement to insure effective use in regulatory frameworks. Future developments should focus on including more subtle and specific toxicity endpoints (e.g., incorporating bioavailability-based in vitro tests) and genomic techniques, extending sediment toxicity testing from single to multispecies approaches, and providing a better link with ecological protection goals. Environ Toxicol Chem 2024;43:1697-1716. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Robert M Burgess
- Atlantic Coastal Environmental Science Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island
| | | | - Paul Sibley
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Mentzel S, Nathan R, Noyes P, Brix KV, Moe SJ, Rohr JR, Verheyen J, Van den Brink PJ, Stauber J. Evaluating the effects of climate change and chemical, physical, and biological stressors on nearshore coral reefs: A case study in the Great Barrier Reef, Australia. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:401-418. [PMID: 38018499 PMCID: PMC11046313 DOI: 10.1002/ieam.4871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
An understanding of the combined effects of climate change (CC) and other anthropogenic stressors, such as chemical exposures, is essential for improving ecological risk assessments of vulnerable ecosystems. In the Great Barrier Reef, coral reefs are under increasingly severe duress from increasing ocean temperatures, acidification, and cyclone intensities associated with CC. In addition to these stressors, inshore reef systems, such as the Mackay-Whitsunday coastal zone, are being impacted by other anthropogenic stressors, including chemical, nutrient, and sediment exposures related to more intense rainfall events that increase the catchment runoff of contaminated waters. To illustrate an approach for incorporating CC into ecological risk assessment frameworks, we developed an adverse outcome pathway network to conceptually delineate the effects of climate variables and photosystem II herbicide (diuron) exposures on scleractinian corals. This informed the development of a Bayesian network (BN) to quantitatively compare the effects of historical (1975-2005) and future projected climate on inshore hard coral bleaching, mortality, and cover. This BN demonstrated how risk may be predicted for multiple physical and biological stressors, including temperature, ocean acidification, cyclones, sediments, macroalgae competition, and crown of thorns starfish predation, as well as chemical stressors such as nitrogen and herbicides. Climate scenarios included an ensemble of 16 downscaled models encompassing current and future conditions based on multiple emission scenarios for two 30-year periods. It was found that both climate-related and catchment-related stressors pose a risk to these inshore reef systems, with projected increases in coral bleaching and coral mortality under all future climate scenarios. This modeling exercise can support the identification of risk drivers for the prioritization of management interventions to build future resilient reefs. Integr Environ Assess Manag 2024;20:401-418. © 2023 Norwegian Institute for Water Research and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Sophie Mentzel
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Rory Nathan
- Department of Infrastructure Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Pamela Noyes
- Center for Public Health and Environmental Assessment, Integrated Climate Sciences Division, Office of Research and Development, USEPA, Washington, District of Columbia, USA
| | - Kevin V Brix
- EcoTox, Miami, Florida, USA
- RSMAES, University of Miami, Miami, Florida, USA
| | - S Jannicke Moe
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Belgium
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, Wageningen, The Netherlands
- Wageningen Environmental Research, Wageningen, The Netherlands
| | - Jennifer Stauber
- CSIRO Environment, Sydney, New South Wales, Australia
- La Trobe University, Wodonga, Victoria, Australia
| |
Collapse
|
3
|
Hu S, Tao C, Liao S, Guan Y, Yin X, Zhu C, Liang J, Guo Z. Oxidative Dissolution of Sulfide Minerals Tends to Accumulate More Dissolved Heavy Metals in Deep Seawater Environments than in Shallow Seawater Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21438-21447. [PMID: 38051181 DOI: 10.1021/acs.est.3c07507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Deep-sea mining magnifies the release of heavy metals into seawater through oxidative dissolution of seafloor massive sulfide (SMS). At present, there is little information about how the metals released into seawater might be affected by the mineral assemblages, seawater conditions, and solid percentages. Here, leaching experiments were carried out to examine the behavior of three sulfides from the Southwest Indian Ridge, under conditions that replicated deep and shallow seawater environments at three solid-liquid ratios. The results demonstrated that sphalerite dissolved rapidly, and the metals released in both experimental conditions were comparable, potentially reflecting galvanic interactions between the sulfide minerals. Large quantities of the released metals were removed from the solutions when hydrous ferric oxides formed, especially for shallow seawater conditions. A comparison of metal concentrations in the leachates with the baseline metal concentrations in natural seawater indicated that most of the released metals, when diluted with seawater, would not have widespread impacts on ecosystems. Based on the obtained unique oxidative dissolution properties of each SMS at variable solid-liquid ratios, targeted wastewater discharge treatments are proposed to minimize impacts from the dissolved metals. This study will support the development of robust guidelines for deep-sea mining activities.
Collapse
Affiliation(s)
- Siyi Hu
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Chunhui Tao
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
- School of Oceanography, Shanghai Jiaotong University, Shanghai 200030, China
| | - Shili Liao
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yao Guan
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xuebo Yin
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chuanwei Zhu
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jin Liang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhikui Guo
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
4
|
Pinheiro M, Martins I, Raimundo J, Caetano M, Neuparth T, Santos MM. Stressors of emerging concern in deep-sea environments: microplastics, pharmaceuticals, personal care products and deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162557. [PMID: 36898539 DOI: 10.1016/j.scitotenv.2023.162557] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Although most deep-sea areas are remote in comparison to coastal zones, a growing body of literature indicates that many sensitive ecosystems could be under increased stress from anthropogenic sources. Among the multiple potential stressors, microplastics (MPs), pharmaceuticals and personal care products (PPCPs/PCPs) and the imminent start of commercial deep-sea mining have received increased attention. Here we review recent literature on these emerging stressors in deep-sea environments and discuss cumulative effects with climate change associated variables. Importantly, MPs and PPCPs have been detected in deep-sea waters, organisms and sediments, in some locations in comparable levels to coastal areas. The Atlantic Ocean and the Mediterranean Sea are the most studied areas and where higher levels of MPs and PPCPs have been detected. The paucity of data for most other deep-sea ecosystems indicates that many more locations are likely to be contaminated by these emerging stressors, but the absence of studies hampers a better assessment of the potential risk. The main knowledge gaps in the field are identified and discussed, and future research priorities are highlighted to improve hazard and risk assessment.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Irene Martins
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| |
Collapse
|
5
|
Cacciuttolo C, Cano D, Custodio M. Socio-Environmental Risks Linked with Mine Tailings Chemical Composition: Promoting Responsible and Safe Mine Tailings Management Considering Copper and Gold Mining Experiences from Chile and Peru. TOXICS 2023; 11:toxics11050462. [PMID: 37235276 DOI: 10.3390/toxics11050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
There is a need to define mine tailings in a clear, precise, multidisciplinary, transdisciplinary, and holistic manner, considering not only geotechnical and hydraulic concepts but also integrating environmental and geochemical aspects with implications for the sustainability of mining. This article corresponds to an independent study that answers questions concerning the definition of mine tailings and the socio-environmental risks linked with mine tailings chemical composition by examining the practical experience of industrial-scale copper and gold mining projects in Chile and Peru. Definitions of concepts and analysis of key aspects in the responsible management of mine tailings, such as characterization of metallic-metalloid components, non-metallic components, metallurgical reagents, and risk identification, among others, are presented. Implications of potential environmental impacts from the generation of acid rock drainage (ARD) in mine tailings are discussed. Finally, the article concludes that mine tailings are potentially toxic to both communities and the environment, and cannot be considered as inert and innocuous materials; thus, mine tailings require safe, controlled, and responsible management with the application of the most high management standards, use of the best available technologies (BATs), use of best applicable practices (BAPs), and implementation of the best environmental practices (BEPs) to avoid risk and potential socio-environmental impact due to accidents or failure of tailings storage facilities (TSFs).
Collapse
Affiliation(s)
- Carlos Cacciuttolo
- Civil Works and Geology Department, Catholic University of Temuco, Temuco 4780000, Chile
- Facultad de Ciencias Forestales y Conservación de la Naturaleza, Universidad de Chile, Santiago 8320000, Chile
- Facultad de Ingeniería, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru
| | - Deyvis Cano
- Programa Académico de Ingeniería Ambiental, Universidad de Huánuco, Huánuco 10001, Peru
| | - María Custodio
- Centro de Investigación de Medicina en Altura y Medio Ambiente, Facultad de Medicina Humana, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909, Huancayo 12006, Peru
| |
Collapse
|