1
|
Ren D, Pan F, Yen H, Tang Z, Sur R, Engel BA. Exploration of a comprehensive versus a regulatory-oriented modeling framework for field pesticide transport assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167487. [PMID: 37778554 DOI: 10.1016/j.scitotenv.2023.167487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Numerous computer models have been developed for simulating pesticide fate and transport. It is usually hard to choose which model is the best for a particular research or regulatory purpose. Currently, the PRZM (Pesticide Root Zone Model) model is widely used for regulatory purposes regarding runoff and erosion. However, it simplifies many hydrological processes and management practices which affect pesticide fate simulations. In this study, the APEX (Agricultural Policy / Environmental eXtender model) model, which is more comprehensive and may provide a more realistic representation of pesticide fate, was compared with the PRZM model regarding methods and capabilities of characterizing hydrology, management, and pesticide transport. Four case studies were used to compare the performances of the two models for simulating surface runoff, sediment yield, pesticide in runoff, and pesticide in sediment. Results showed that the APEX model performed better than the PRZM model for simulating surface runoff and sediment yield, and performed similarly to the PRZM model for simulating pesticide loads in runoff and erosion. Both models have limitations for capturing the runoff events caused by high intensity rainfall. APEX is superior to PRZM in simulating detailed management operations, considering more hydrological processes, and achieving spatially distributed simulation, but it requires a higher number of inputs and user-selected parameters compared to PRZM. With further validations of the capabilities of APEX in pesticide modeling and the development of web-based platforms to facilitate the set up and use of comprehensive models, a more accurate and reliable pesticide assessment scheme is anticipated by using comprehensive models like APEX.
Collapse
Affiliation(s)
- Dongyang Ren
- Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907, USA
| | - Feng Pan
- Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907, USA
| | - Haw Yen
- Environmental Exposure Modeling, Regulatory Science North America, Bayer US Crop Science Division, Chesterfield 63017, USA
| | - Zhenxu Tang
- Environmental Exposure Modeling, Regulatory Science North America, Bayer US Crop Science Division, Chesterfield 63017, USA
| | - Robin Sur
- Bayer AG, Research & Development Crop Science, Environmental Safety Ass. & Strategy, Building 6692 2.14, 40789 Monheim, Germany
| | - Bernard A Engel
- Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Degrendele C, Prokeš R, Šenk P, Jílková SR, Kohoutek J, Melymuk L, Přibylová P, Dalvie MA, Röösli M, Klánová J, Fuhrimann S. Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa. TOXICS 2022; 10:629. [PMID: 36287909 PMCID: PMC9610731 DOI: 10.3390/toxics10100629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
Over the last decades, concern has arisen worldwide about the negative impacts of pesticides on the environment and human health. Exposure via dust ingestion is important for many chemicals but poorly characterized for pesticides, particularly in Africa. We investigated the spatial and temporal variations of 30 pesticides in dust and estimated the human exposure via dust ingestion, which was compared to inhalation and soil ingestion. Indoor dust samples were collected from thirty-eight households and two schools located in two agricultural regions in South Africa and were analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry. We found 10 pesticides in dust, with chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and tebuconazole quantified in >50% of the samples. Over seven days, no significant temporal variations in the dust levels of individual pesticides were found. Significant spatial variations were observed for some pesticides, highlighting the importance of proximity to agricultural fields or of indoor pesticide use. For five out of the nineteen pesticides quantified in dust, air, or soil (i.e., carbendazim, chlorpyrifos, diazinon, diuron and propiconazole), human intake via dust ingestion was important (>10%) compared to inhalation or soil ingestion. Dust ingestion should therefore be considered in future human exposure assessment to pesticides.
Collapse
Affiliation(s)
- Céline Degrendele
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Aix-Marseille University, CNRS, LCE, 13003 Marseille, France
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Martin Röösli
- University of Basel, 4002 Basel, Switzerland
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Samuel Fuhrimann
- University of Basel, 4002 Basel, Switzerland
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, The Netherlands
| |
Collapse
|