1
|
Mendoza-Almanza B, Guerrero-González MDLL, Loredo-Tovias M, García-Arreola ME, Loredo-Osti C, Padilla-Ortega E, Delgado-Sánchez P. AsNAC Genes: Response to High Mercury Concentrations in Allium sativum Seed Clove. BIOTECH 2025; 14:27. [PMID: 40265457 PMCID: PMC12015881 DOI: 10.3390/biotech14020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Heavy metal contamination in soils is a growing concern due to anthropogenic activities, and Allium sativum (garlic) has shown tolerance to mercury pollution. We analyzed the physiological and molecular responses of garlic cloves exposed to HgCl2 at 0, 5000, 23,000, and 46,000 mg/kg for 2, 3, and 4 h. The germination percentage was lower than 46,000 mg/kg Hg for 4 h. We also analyzed the expression levels of NAC transcription factors and found that AsNAC11 had higher expression at 46,000 mg/kg at 2 h; AsNAC17 was underexpressed and the maximum was at 2 h at 23,000 mg/kg. AsNAC20 had the highest expression (30 times more than the control) at 3 and 4 h with 23,000 mg/Kg. AsNAC27 showed the highest expression at 3 h with 23,000 mg/kg. The tissues exhibited a maximum Hg bioconcentration factor of 0.037 at 23,000 mg/kg, indicating moderate mercury absorption. However, at a concentration of 46,000 mg/kg, the BCF decreased to 0.023. Our in-silico analysis revealed that the analyzed AsNACs are associated with various abiotic stress responses. This study provides valuable insights into genes that could be utilized for genetic improvement to enhance crop resistance to mercury soil contamination.
Collapse
Affiliation(s)
- Brenda Mendoza-Almanza
- Biotechnology Laboratory, Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78439, SLP., Mexico; (B.M.-A.); (M.d.l.L.G.-G.); (C.L.-O.)
| | - María de la Luz Guerrero-González
- Biotechnology Laboratory, Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78439, SLP., Mexico; (B.M.-A.); (M.d.l.L.G.-G.); (C.L.-O.)
| | - Marcos Loredo-Tovias
- Soil and Water Laboratory, Faculty of Engineering, Universidad Autónoma de San Luis Potosí, San Luis Potosí CP 78290, SLP., Mexico;
| | - María Elena García-Arreola
- Environmental Geochemistry Laboratory, Institute of Geology, Universidad Autónoma de San Luis Potosí, San Luis Potosí CP 78290, SLP., Mexico;
| | - Catarina Loredo-Osti
- Biotechnology Laboratory, Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78439, SLP., Mexico; (B.M.-A.); (M.d.l.L.G.-G.); (C.L.-O.)
| | - Erika Padilla-Ortega
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78210, SLP., Mexico;
| | - Pablo Delgado-Sánchez
- Biotechnology Laboratory, Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez CP 78439, SLP., Mexico; (B.M.-A.); (M.d.l.L.G.-G.); (C.L.-O.)
| |
Collapse
|
2
|
Wang Y, Xu T, Song E, Jiang Y, Wang F, Gu C, Ju X, Bian Y, Song Y, Kengara FO, Jiang X. Ultrasensitive detection of trace Hg(Ⅱ) in acidic conditions using DMABR loaded on sepiolite: Function, application and mechanism studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134734. [PMID: 38850937 DOI: 10.1016/j.jhazmat.2024.134734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Fast and real-time detection of trace Hg(Ⅱ) by fluorescent probes under acidic conditions is urgently required due to the high toxicity and accessibility to creatures and human being. However, fluorescent probes for Hg(Ⅱ) detection in environmental samples are rarely reported due to the protonation potential of acidic mercury sources. In this study, the SD probe was developed by 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) loaded on sepiolite by hydrothermal treatment, and showed excellent Hg(Ⅱ) detection performances for mercury sources at pH 4-10 due to buffering ability of the hyperconjugated lactam rings. Sepiolite functioned as the support skeleton to decrease intermolecular transition, and thus increased the sensitivity. At pH 4, the SD probe showed high selectivity and sensitivity for Hg(Ⅱ) among various species, with low LOD and binding constant of 4.78 × 10-9 M and 1.34 × 106 M-1, respectively. Through DFT calculations, MAS 1H NMR and 2D-COS analysis, the detection mechanism was demonstrated as SN1 substitution of the spontaneous leaving H on amino groups in the transient state during tautomeric equilibrium, rather than the expected high-affinity sulphydryl. Additionally, the SD probe exhibited promising potential in quantifying water-soluble and bioavailable Hg(Ⅱ) in acidic polluted soil and water samples. Moreover, real-time detection was realized by paper-based strips.
Collapse
Affiliation(s)
- Yuncheng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyuan Xu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - En Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhao Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Rodriguez-Pascual MJ, Vega CM, Andrade N, Fernández LE, Silman MR, Torrents A. "Hg distribution and accumulation in soil and vegetation in areas impacted by artisanal gold mining in the Southern Amazonian region of Madre de Dios, Peru.". CHEMOSPHERE 2024; 361:142425. [PMID: 38797216 DOI: 10.1016/j.chemosphere.2024.142425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Artisanal and small-scale gold mining (ASGM) is the primary global source of anthropogenic mercury (Hg) emissions. It has impacted the Amazon rainforest in the Peruvian region of Madre de Dios. However, few studies have investigated Hg's distribution in terrestrial ecosystems in this region. We studied Hg's distribution and its predictors in soil and native plant species from artisanal mining sites. Total Hg concentrations were determined in soil samples collected at different depths (0-5 cm and 5-30 cm) and plant samples (roots, shoots, leaves) from 19 native plant species collected in different land cover categories: naked soil (L1), gravel piles (L2), natural regeneration (L3), reforestation (L4), and primary forest (L5) in the mining sites. Hg levels in air were also studied using passive air samplers. The highest Hg concentrations in soil (average 0.276 and 0.210 mg kg-1 dw.) were found in the intact primary forest (L5) at 0-5 cm depth and in the plant rooting zones at 5-30 cm depth, respectively. Moreover, the highest Hg levels in plants (average 0.64 mg kg-1 dw) were found in foliage of intact primary forest (L5). The results suggest that the forest in these sites receives Hg from the atmosphere through leaf deposition and that Hg accumulates in the soil surrounding the roots. The Hg levels found in the plant leaves of the primary forest are the highest ever recorded in this region, exceeding values found in forests impacted by Hg pollution worldwide and raising concerns about the extent of the ASGM impact in this ecosystem. Correlations between Hg concentrations in soil, bioaccumulation in plant roots, and soil physical-chemical characteristics were determined. Linear regression models showed that the soil organic matter content (SOM), pH, and electrical conductivity (EC) predict the Hg distribution and accumulation in soil and bioaccumulation in root plants.
Collapse
Affiliation(s)
- Maria J Rodriguez-Pascual
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Claudia M Vega
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Natasha Andrade
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Luis E Fernández
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Global Ecology, Carnegie Institute for Science, Stanford, CA, 94305, USA
| | - Miles R Silman
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, Peru; Sabin Center for Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27109, USA; Department of Biology, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Alba Torrents
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
4
|
Deng Q, Sun Z, Zhang L, Zhang Y, Zhou L, Yang J, Sun G, Lu C. Transport characteristics of heavy metals in the soil-atmosphere-wheat system in farming areas and development of multiple linear regression predictive model. Sci Rep 2024; 14:17322. [PMID: 39068273 PMCID: PMC11283552 DOI: 10.1038/s41598-024-68440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
Heavy metal accumulation in agricultural products has become a major concern. Previous studies have focused on the transport of heavy metals from the soil and their accumulation in crops. However, recent studies revealed that wheat leaves, ears, and awns can also transport and accumulate heavy metals. Wheat grains can be influenced by two sources of heavy metals: soil contamination and atmospheric deposition. To comprehend the transport characteristics of heavy metals in soil, atmospheric deposition, and wheat, 37 samples each for wheat rhizosphere soil, wheat roots, stems, leaves, and grains were collected. Fifteen samples of atmospheric dry deposition and atmospheric wet deposition were collected from Linshu County (northern area), China. Based on the test data, the characteristics of heavy metals and their distribution in the study area were analyzed. Migration patterns of heavy metals in crops from different sources were investigated using Pearson correlation and redundancy analysis. Finally, a predictive model for heavy metals in wheat grains was developed using multiple linear regression analysis. Significant disparities in the distribution of heavy metals existed among wheat roots, stems, leaves, and grains. The coefficient of variation of heavy metals in atmospheric deposition was relatively high, indicating discernible spatial patterns influenced by human activities. Notably, a positive correlation was observed between the concentration of heavy metals in wheat grains and atmospheric deposition of Hg, Cd, and Pb. Conversely, Zn and Ni levels in wheat grains were significantly negatively associated with soil Zn, Ni, pH, and OM content. The contribution of heavy metal elements from different sources varied in their impact on the grain's heavy metal content. Specifically, atmospheric deposition was the primary source of Hg and Pb in wheat grains, while Cd, Ni, Cu, and Zn were predominantly derived from soil. Using a multiple linear regression model, we could accurately predict Hg, Pb, Cd, Ni, Zn, and As concentrations in crop grains. This model can facilitate quantitative evaluation of ecological risk of heavy metals accumulation in crops in the study area.
Collapse
Affiliation(s)
- Qinghai Deng
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhenzhou Sun
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liping Zhang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Yongshuai Zhang
- No. 7 Geological Brigade, Shandong Provincial Bureau of Geology & Mineral Resources, Linyi, 276000, China
| | - Liangyu Zhou
- No. 7 Geological Brigade, Shandong Provincial Bureau of Geology & Mineral Resources, Linyi, 276000, China
| | - Jingjing Yang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Guizong Sun
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chang Lu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
5
|
Li R, Wang J, Zhou Y, Zhang W, Feng D, Su X. Heavy metal contamination in Shanghai agricultural soil. Heliyon 2023; 9:e22824. [PMID: 38125553 PMCID: PMC10730590 DOI: 10.1016/j.heliyon.2023.e22824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
As heavy metals in soil could enrich in biomass and pose health risk to human, it is vital to monitor their contaminations to ensure qualified agricultural production. In this study, we collected >4000 soil samples from agricultural fields in Shanghai during 2010∼2020, and unveiled heavy metal contamination status in this metropolitan. We found that although Shanghai has a long industrialization history, the heavy metal levels in agricultural soil are within safe ranges according to national standard. Specifically, the median levels of Cd, Hg, As, Pb, Cr and Cu are 0.11, 0.13, 7.47, 23.80, 41.00 and 28.30 mg/kg, respectively, which are as good as, or even better than national averages. However, there are spatial and temporal heterogeneities for heavy metal contaminations in Shanghai. For example, the levels of Cd, Hg and Cr are relatively higher in some districts with high industry density, which should be further monitored in the future. Moreover, while the levels for Cd, Cr and Pb have decreased, the level for Hg has mildly increased during this period which needs counteractive measures. Correlation analysis of heavy metal levels and soil fertility parameters suggested overuse of fertilizers may be related to heavy metal contamination in some regions. In summary, our study present by far the largest and most comprehensive landscape of heavy metal contamination in Shanghai agricultural soil, which will be useful for future policy-design and land use planning to ensure safe agricultural production.
Collapse
Affiliation(s)
- Ruihong Li
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, 200335, China
| | - Jingzhi Wang
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, 200335, China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China
| | - Weiyi Zhang
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, 200335, China
| | - Dongsheng Feng
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, 200335, China
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Anti-Doping Laboratory, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
6
|
Hussain S, Khanam T, Ullah S, Aziz F, Sattar A, Hussain I, Saddique MAB, Maqsood A, Ding C, Wang X, Yang J. Assessment and Exposure Analysis of Trace Metals in Different Age Groups of the Male Population in Southern Punjab, Pakistan. TOXICS 2023; 11:958. [PMID: 38133359 PMCID: PMC10747213 DOI: 10.3390/toxics11120958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
In developing countries, like Pakistan, the pursuit of urbanization and economic development disrupts the delicate ecosystem, resulting in additional biogeochemical emissions of heavy metals into the human habitat and posing significant health risks. The levels of these trace elements in humans remain unknown in areas at higher risk of pollution in Pakistan. In this investigation, selected trace metals including Copper (Cu), Chromium (Cr), Lead (Pb) Cadmium (Cd), Cobalt (Co), Nickel (Ni), and Arsenic (As) were examined in human hair, urine, and nail samples of different age groups from three major cities (Muzaffargarh, Multan, and Vehari) in Punjab province, Pakistan. The results revealed that the mean concentrations (ppm) of Cr (1.1) and Cu (9.1) in hair was highest in Muzaffargarh. In urine samples, the mean concentrations (μg/L) of Co (93), As (79), Cu (69), Cr (56), Ni (49), Cd (45), and Pb (35) were highest in the Multan region, while As (34) and Cr (26) were highest in Vehari. The mean concentrations (ppm) of Ni (9.2), Cr (5.6), and Pb (2.8), in nail samples were highest in Vehari; however, Multan had the highest Cu (28) concentration (ppm). In urine samples, the concentrations of all the studied metals were within permissible limits except for As (34 µg/L) and Cr (26 µg/L) in Vehari. However, in nail samples, the concentrations of Ni in Multan (8.1 ppm), Muzaffargarh (9 ppm), Vehari (9.2 ppm), and Cd (3.69 ppm) in Muzaffargarh exceeded permissible limits. Overall, the concentrations of metals in urine, nail, and hair samples were higher in adults (39-45 age group). Cr, Cu, and Ni revealed significantly higher concentrations of metals in hair and water in Multan, whereas As in water was significantly (p < 0.001) correlated with urinary As in Multan, indicating that the exposure source was region-specific.
Collapse
Affiliation(s)
- Sajjad Hussain
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.H.); (S.U.)
- Layyah Institute, University of Lahore, Layyah 31200, Pakistan
| | - Tasawar Khanam
- Ecohealth and Toxicology Laboratory, Department of Biosciences, COMSATS University Islamabad, Islamabad 44000, Pakistan;
- Department of Zoology, University of Chakwal, Chakwal 48800, Pakistan
| | - Subhan Ullah
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.H.); (S.U.)
| | - Fouzia Aziz
- Department of Economics, University of Layyah, Layyah 31200, Pakistan
- Department of Economics, Women University, Multan 60000, Pakistan
| | - Abdul Sattar
- Department of Agronomy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Imran Hussain
- Environmental Biotechnology Laboratory, Department of Biotechnology, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22020, Pakistan;
| | | | - Amna Maqsood
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (C.D.); (X.W.)
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; (C.D.); (X.W.)
| | - Jianjun Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Meloni F, Farieri A, Higueras PL, Esbrí JM, Nisi B, Cabassi J, Rappuoli D, Vaselli O. Mercury distribution in plants and soils from the former mining area of Abbadia San Salvatore (Tuscany, Central Italy). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8523-8538. [PMID: 37648955 PMCID: PMC10611595 DOI: 10.1007/s10653-023-01739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
The distribution of heavy metals in plants (Castanea sativa, Sambucus nigra, Verbascum thapsus, Popolus spp., Salix spp., Acer pseudoplatanus, Robinia pseudoacacia) growing in soils from active and abandoned mining areas is of scientific significance as it allows to recognize their ability to survive in a hostile environment and provide useful indications for phytoremediation operations. In this work, soils from the former Hg-mining area of Abbadia San Salvatore (Tuscany, Central Italy) were analyzed for total, leached Hg, % of organic and inorganic-related Hg. The dehydrogenase enzyme activity (DHA) was also measured with the aim to evaluate the status of the soil, being characterized by high Hg contents (up to 1068 mg kg-1). Eventually, the concentration of Hg in the different parts of the plants growing on these soils was also determined. Most studied soils were dominated by inorganic Hg (up to 92%) while the DHA concentrations were < 151 µg TPF g-1 day-1, suggesting that the presence of Hg is not significantly affecting the enzymatic soil activity. This is also supported by the bioaccumulation factor (BF), being predominantly characterized by values < 1. Sambucus nigra and Verbascum thapsus had the highest Hg contents (39.42 and 54.54 mg kg-1, respectively). The plant leaves appear to be the main pathways of Hg uptake, as also observed in other mining areas, e.g., Almadèn (Spain), indicating that particulate-Hg and Hg0 are the main forms entering the plant system, the latter derived by the GEM emitted by both the edifices hosting the roasting furnaces and the soils themselves.
Collapse
Affiliation(s)
- Federica Meloni
- Department of Earth Sciences, Via G. La Pira, 4-50121, Florence, Italy.
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy.
| | | | - Pablo L Higueras
- Instituto de Geología Aplicada, EIMIA - Pl. Manuel Meca 1 13400 Almadén, Ciudad Real, Spain
| | - José M Esbrí
- Departament of Mineralogy and Petrology, (UCM), C. de José Antonio Novais, 12, 28040, Madrid, Spain
| | - Barbara Nisi
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy
| | - Jacopo Cabassi
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy
| | - Daniele Rappuoli
- Unione Dei Comuni Amiata Val d'Orcia, Unità Di Bonifica, Via Grossetana, 209-53025, Piancastagnaio, Siena, Italy
- Parco Museo Minerario Di Abbadia San Salvatore - Via Suor Gemma, 53021 Abbadia San Salvatore 1, Siena, Italy
| | - Orlando Vaselli
- Department of Earth Sciences, Via G. La Pira, 4-50121, Florence, Italy.
- CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira, 4-50121, Florence, Italy.
| |
Collapse
|
8
|
Piccirillo C. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117896. [PMID: 37080100 DOI: 10.1016/j.jenvman.2023.117896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The production of increasing quantities of by-products is a key challenge for modern society; their valorisation - turning them into valuable compounds with technological applications - is the way forward, in line with circular economy principles. In this review, the conversion of bones (by-products of the agro-food industry) into bone char is described. Bone char is obtained with a process of pyrolysis, which converts the organic carbon into an inorganic graphitic one. Differently from standard biochar of plant origin, however, bone char also contains calcium phosphates, the main component of bone (often hydroxyapatite). The combination of calcium phosphate and graphitic carbon makes bone char a unique material, with different possible uses. Here bone chars' applications in environmental remediation, sustainable agriculture, catalysis and electrochemistry are discussed; several aspects are considered, including the bones used to prepare bone char, the preparation conditions, how these affect the properties of the materials (i.e. porosity, surface area) and its functional properties. The advantages and limitations of bone chars in comparison to traditional biochar are discussed, highlighting the directions the research should take for bone chars' performances to improve. Moreover, an analysis on the sustainability of bone chars' preparation and use is also included.
Collapse
Affiliation(s)
- Clara Piccirillo
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
9
|
Meloni F, Farieri A, Higueras PL, Esbrí JM, Nisi B, Cabassi J, Rappuoli D, Vaselli O. Mercury distribution in plants and soils from the former mining area of Abbadia San Salvatore (Tuscany, central Italy). RESEARCH SQUARE 2023:rs.3.rs-2823040. [PMID: 37131725 PMCID: PMC10153366 DOI: 10.21203/rs.3.rs-2823040/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The distribution of heavy metals in plants growing in soils from active and abandoned mining areas is of scientific significance as it allows one to recognize their ability to survive in a hostile environment and to provide useful indications for phytoremediation operations. In this work, soils developed in the former Hg-mining area of Abbadia San Salvatore (Tuscany, Central Italy) were analyzed for total, leached Hg, % of organic- and inorganic-related Hg. The dehydrogenase enzyme activity (DHA) was also measured with the aim to evaluate the status of the soil, being characterized by high Hg content. Eventually, the concentration of Hg in the different parts of the plants growing on these soils was analyzed. The soils showed Hg content up to 1068 mg kg - 1 and in most of them is dominated by inorganic Hg (up to 92%). The DHA concentrations were < 151 µg TPF g - 1 day - 1 , suggesting that the presence of Hg is not significantly affecting the enzymatic soil activity. This is also supported by the bioaccumulation factor (BF) that is < 1 in most of the studied plants. Generally speaking, the plant leaves appear to be one of the main pathways of Hg uptake, as also observed in other mining areas, e.g. Almaden (Spain), suggesting that particulate-Hg and Hg 0 are the main forms entering the plant system, the latter derived by the GEM emitted by both the edifices hosting the roasting furnaces and the soils themselves.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Nisi
- CNR-IGG Institute of Geosciences and Earth Resources
| | | | | | | |
Collapse
|