1
|
Bağdatli S, Yön Ertuğ ND. The effect of abamectin exposure on gametogenesis in zebrafish. Sci Rep 2025; 15:9038. [PMID: 40090936 PMCID: PMC11911406 DOI: 10.1038/s41598-025-93638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Today, pesticides are widely used to enhance agricultural yield mixed with soil and water, creating significant environmental pollution. The extensive use of insecticides for pest control has made this issue more pronounced. Abamectin, a key member of the avermectin family, is used as an insecticide and an antihelminthic agent in agriculture. It is an active and effective agricultural pesticide, particularly preferred for combating pests such as aphids and red spider mites. The dosage and frequency of its use vary depending on the target plant species and pest organism. For example, abamectin-based products with an 18 g/L EC formulation in apple orchards are typically recommended at 10 ml/100 L of water to control red spider mites. Although significantly below agricultural application levels, the low dose of 0.75 µg L⁻1 used in our study has demonstrated effects that cannot be overlooked. However, it can contaminate aquatic environments, posing harmful effects on organisms. Studies indicate that abamectin exposure may lead to serious health issues, showing toxic and reproductive toxicity effects in aquatic species. Examining abamectin's effects on testicular tissue revealed hypertrophy of Sertoli cells in the group exposed to 0.75 µg L⁻1 of abamectin. Apoptotic cells were observed in the groups exposed to 0.75 µg L⁻1 and 1.5 µg L⁻1. At the same time, pyknotic structures, disruption of seminiferous tubules, interstitial fibrosis, and atrophic appearance were identified across all dose groups, with severity increasing dose-dependently. Analysis of ovarian tissue demonstrated distortion of the zona radiata in groups exposed to 0.75 µg L⁻1 and 1.5 µg L⁻1 of abamectin. Moreover, in all dose groups, thickening of the zona radiata, vacuolization, formation of degenerated follicles, and nuclear disruption were observed, with these pathological alterations exacerbating in a dose-dependent manner. Like many studies involving zebrafish, this research is crucial for assessing potential toxic effects that may pose risks to human health. This study examined the histopathological effects of varying doses of abamectin (0.75 µg L⁻1, 1.5 µg L⁻1, and 3 µg L⁻1) on zebrafish gonads after 96 h of exposure. Using standard histological techniques, the samples prepared were stained with H&E and observed under a light microscope. Statistical analyses were conducted using SPSS 23. The normality of the data was assessed with the Shapiro-Wilk test. One-way ANOVA and Tukey post-hoc tests were used for normally distributed groups, while the Kruskal-Wallis and Dunnett's T3 tests were applied for non-normally distributed groups. All analyses were performed with a 95% confidence interval and a significance level of p > 0.05.
Collapse
Affiliation(s)
- Sevda Bağdatli
- Department of Biology, Faculty of Science, Sakarya University, Sakarya, 54187, Turkey.
| | - Nazan Deniz Yön Ertuğ
- Department of Biology, Faculty of Science, Sakarya University, Sakarya, 54187, Turkey
| |
Collapse
|
2
|
Guo L, Gu J, Yuan W, Hu J, Zhang X, Ji G. Long-term exposure to Emamectin benzoate impairs reproductive health in adult zebrafish and alters neurodevelopment in their offspring. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137007. [PMID: 39764967 DOI: 10.1016/j.jhazmat.2024.137007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 03/12/2025]
Abstract
Emamectin benzoate (EMB) is a widely used insecticide that can accumulate in aquatic environments under specific conditions of high application intensity or improper management, posing potential risks to aquatic organisms and human health. This study aimed to evaluate the reproductive toxicity of long-term EMB exposure in zebrafish (Danio rerio) and neurodevelopmental toxicity in their offspring. Zebrafish embryos were exposed to various concentrations of EMB (0, 0.1, 1, and 10 μg/L) for up to 120 days. The results revealed a significant decrease in reproductive capacity and gonadal tissue damage in the F0 generation zebrafish. Additionally, the increased oxidative stress levels induced by EMB exposure further exacerbated reproductive toxicity. The F1 generation of zebrafish exhibited a high rate of deformities, reduced body length, decreased swim bladder area, and abnormal swimming behavior. Compared to the control group, zebrafish larvae in the 1 and 10 μg/L EMB exposure groups showed a significant reduction in distance travelled of 18.3 % and 36.9 % and a significant increase in dwell time of 6.1 % and 17.1 %. Analysis of neurodevelopment and gene expression in the F1 generation revealed that EMB exposure diminished the development of the central nervous system and further aggravated developmental toxicity through pathways such as oxidative stress, inflammatory response, apoptosis. Notably, maternal exposure to EMB exerted a more significant impact on developmental and neurotoxic effects in the offspring. This study demonstrated that long-term EMB exposure causes significant parental reproductive and offspring neurodevelopmental toxicity in aquatic organisms, thus highlighting the importance of environmental risk assessment and pollution control.
Collapse
Affiliation(s)
- Liguo Guo
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jie Gu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Wen Yuan
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Hu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinyu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| | - Guixiang Ji
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
3
|
Xu T, Liu F, He J, Xu P, Qu J, Wang H, Yue J, Yang Q, Wu W, Zeng G, Sun D, Chen X. Leveraging zebrafish models for advancing radiobiology: Mechanisms, applications, and future prospects in radiation exposure research. ENVIRONMENTAL RESEARCH 2025; 266:120504. [PMID: 39638026 DOI: 10.1016/j.envres.2024.120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Ionizing radiation (IR) represents a significant risk to human health and societal stability. To effectively analyze the mechanisms of IR and enhance protective strategies, the development of more sophisticated animal models is imperative. The zebrafish, with its high degree of genomic homology to humans and the capacity for whole-body optical visualization and high-throughput screening, represents an invaluable model for the study of IR. This review examines the benefits of utilizing zebrafish as a model organism for research on IR, emphasizing recent advancements and applications. It presents a comprehensive overview of the methodologies for establishing IR models in zebrafish, addresses current challenges, and discusses future development trends. This paper provide theoretical support for elucidating the mechanisms of IR injury and developing effective treatment strategies.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China; Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China
| | - Fan Liu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Junying Qu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jinghui Yue
- Nuclear Power Institute of China, Chengdu, 610200, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Guoming Zeng
- Intelligent Construction Technology Application Service Center, School of Architecture and Engineering, Chongqing City Vocational College, Chongqing, 402160, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China; Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China.
| |
Collapse
|
4
|
Viana JLM, Dos Santos SRV, Santos LHMLM, Jaén-Gil A, Rodríguez-Mozaz S, Barceló D, Franco TCRDS. Pesticide contamination and associated ecological risks in estuarine waters of Brazil's Legal Amazon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:617-633. [PMID: 39695039 DOI: 10.1007/s11356-024-35778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Pesticide contamination remains a significant environmental concern globally, with important implications for aquatic ecosystems. Despite being one of the world's largest pesticide consumers, monitoring and assessment of pesticide pollution are limited in Brazil, especially in sensitive regions like the Amazon. In this study, the occurrence and environmental risks of 8 pesticides of different classes, namely alachlor, atrazine, chlorfenvinphos, isoproturon, irgarol, simazine, diuron, and its transformation product DCPMU (1-(3,4-dichlorophenyl)-3-methyl urea) were analysed in surface water of the São Marcos Estuarine Complex (SMEC) in two consecutive years. The quantification of the target compounds was performed using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Suspected and untargeted screening analyses with ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was also conducted to identify transformation products (TPs) and additional pesticides in water samples. All target pesticides, except for alachlor, were found in at least one sampling campaign. The antifouling biocides irgarol and diuron were ubiquitous in 2018 and 2019, with detection frequencies varying between 81 and 100% and maximum concentrations of 13.6 ng L-1 and 17.1 ng L-1, respectively. In 2019, the detection frequencies of the target pesticides were considerably higher than in 2018, with atrazine, isoproturon, and DCPMU being found in 100% of the samples. In 2019, chlorfenvinphos and isoproturon were the pesticides with the highest levels, reaching 48.6 ng L-1 and 44.6 ng L-1, respectively. The UHPLC-HRMS analysis showed the presence of the pesticides DEET (N,N-diethyl-meta-toluamide), octhilinone (2-Octyl-4-isothiazolin-3-one), and cyprodinil (4-cyclopropyl-6-methyl-N-phenylpyrimidin-2-amine) in water samples. Additionally, the TPs 2-hydroxy-atrazine, didemethylisoproturon (1-(4-isopropylphenyl)urea) and M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) were found. The environmental risk assessment showed that irgarol was the primary contributor to the global risk quotient in the SMEC region. Similarly, chlorfenvinphos also showed a high risk to the local aquatic biota, especially in 2019. This research not only highlights the urgent need for improved pesticide monitoring in Brazil but also establishes a baseline for future studies and environmental management efforts in SMEC. We emphasize the importance of prioritising pollutants and implementing effective mitigation strategies to protect the fragile aquatic ecosystems of the Brazilian Amazon.
Collapse
Affiliation(s)
- José Lucas Martins Viana
- Environmental Studies Centre, São Paulo State University (UNESP), Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil.
- Laboratório de Química Analítica E Ecotoxicologia (LAEC), Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, São Luís, Maranhão, 65080-805, Brazil.
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain.
| | - Sara Raiane Viana Dos Santos
- Laboratório de Química Analítica E Ecotoxicologia (LAEC), Federal University of Maranhão (UFMA), Av. Dos Portugueses, 1966, São Luís, Maranhão, 65080-805, Brazil
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
| | - Lúcia H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Girona, Spain
| | - Adrián Jaén-Gil
- Norwegian Research Centre (NORCE), Climate & Environment Division, Mekjarvik 12, 4072, Randaberg, Norway
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/Emili Grahit 101, 17003, Girona, Spain
- University of Girona, Girona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | | |
Collapse
|
5
|
Xue M, Jia M, Qin Y, Francis F, Gu X. Toxicity of parental co-exposure of microplastic and bisphenol compounds on adult zebrafish: Multi-omics investigations on offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176897. [PMID: 39401590 DOI: 10.1016/j.scitotenv.2024.176897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
In recent years, the widespread use of bisphenol compounds and microplastics (MP) have attracted attention due to their harmful effects. Here, individual and combined effects of MP and bisphenol compounds, were assessed on adult zebrafish after co-exposure of bisphenol A (BPA) or bisphenol S (BPS) and 25 μm polyethylene MP. Impacts on their offspring (the F1 generation) were also investigated. The reproductive toxicity in adult zebrafish impacted exerted by bisphenol compounds were aggravated by the co-presence of MP. Transcriptomics and metabolomics further showed single or co-exposure of bisphenol compounds and MP could together regulate apoptosis, calcium signaling pathway and glycerophospholipid signaling pathways. Our results also showed the different toxicity mechanisms on transcriptional and metabolic profiles in the combination effects of bisphenol compounds and MP. The co-exposure of BPA and MP predominantly influenced neurotoxicity via the MAPK signaling pathway and voltage-dependent calcium channels, whereas the co-exposure of BPS and MP principally affected visual development through phototransduction and retinol metabolism. The co-exposure of BPA and MP, as well as BPS and MP, specifically regulate lipid metabolism and carbohydrate metabolism in zebrafish offspring, respectively. Overall, this study provided a deep understanding of the toxicity differences between co-exposure and single exposure of bisphenol compound and MP in zebrafish, as well as the transgenerational effects and potential molecular mechanisms of bisphenol compounds and MP in zebrafish offspring.
Collapse
Affiliation(s)
- Moyong Xue
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium; Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, China
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
6
|
Gai T, Zhang L, Chen L, Wang Y, Sun X, Yang Y, Cao W, Chen Y. Transcriptomic analysis reveals decreased expression of detoxification genes in Caenorhabditis elegans exposed to mepanipyrim and cyprodinil: Implications for multigenerational exposure effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117265. [PMID: 39541704 DOI: 10.1016/j.ecoenv.2024.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The broad-spectrum fungicides mepanipyrim (Mep) and cyprodinil (Cyp) have been reported to be used worldwide to control gray mold of fruit crops. Consequently, they are often detected in the water and food items. However, the impacts and potential mechanisms of these two pesticides on environmental organisms remain unclear. Utilizing Caenorhabditis elegans (C. elegans) as the model, the toxic effects and mechanisms were analyzed after Mep and Cyp exposure over four generations (P0-F3). The results showed that Mep and Cyp at concentrations over 0.1 µg/L affected the motility behavior, while 1.0 µg/L dosage and above inhibited the growth of C. elegans. In addition, multigenerational exposure could significantly impair both locomotion and development of C. elegans even at 0.01 µg/L dosage. Notably, constant exposure resulted in the function abnormalities of cholinergic, dopaminergic and GABAergic neurons, as well as the accumulation of ROS. Further transcriptome analysis showed reduced expression of 14 genes and 26 genes in xenobiotic metabolic pathway following Mep and Cyp exposure, respectively. The buildup of Mep/Cyp and ROS might have led to nerve impairment and behavioral abnormality. These findings enhanced understanding of the toxic effects of Mep and Cyp and provided insights into their eco-toxicological evaluation.
Collapse
Affiliation(s)
- Tingting Gai
- School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China
| | - Lianfeng Zhang
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China
| | - Liangwen Chen
- School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China
| | - Yun Wang
- School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China.
| | - Xiaonan Sun
- School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China
| | - Yuhao Yang
- School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China
| | - Wenjing Cao
- School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China
| | - Yanyan Chen
- School of Bioengineering, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui 232038, People's Republic of China
| |
Collapse
|
7
|
Zhang F, Tang C, Zhu Y, Wang Q, Huang X, Yang C, He C, Zuo Z. Long-term exposure to aryl hydrocarbon receptor agonist neburon induces reproductive toxicity in male zebrafish (Danio rerio). J Environ Sci (China) 2024; 142:193-203. [PMID: 38527884 DOI: 10.1016/j.jes.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 03/27/2024]
Abstract
Neburon is a phenylurea herbicide that is widely used worldwide, but its toxicity is poorly studied. In our previous study, we found that neburon has strong aryl hydrocarbon receptor (AhR) agonist activity, but whether it causes reproductive toxicity is not clear. In the present study, zebrafish were conducted as a model organism to evaluate whether environmental concentrations of neburon (0.1, 1 and 10 µg/L) induce reproductive disorder in males. After exposure to neburon for 150 days from embryo to adult, that the average spawning egg number in high concentration group was 106.40, which was significantly lower than 193.00 in control group. This result was mainly due to the abnormal male reproductive behavior caused by abnormal transcription of genes associated with reproductive behavior in the brain, such as secretogranin-2a. The proportions of spermatozoa in the medium and high concentration groups were 82.40% and 83.84%, respectively, which were significantly lower than 89.45% in control group. This result was mainly caused by hormonal disturbances and an increased proportion of apoptotic cells. The hormonal disruption was due to the significant changes in the transcription levels of key genes in the hypothalamus-pituitary-gonadal axis following neburon treatment. Neburon treatment also significantly activated the AhR signaling pathway, causing oxidative stress damage and eventually leading to a significant increase in apoptosis in the exposed group. Together, these data filled the currently more vacant profile of neburon toxicity and might provide information to assess the ecotoxicity of neburon on male reproduction at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Fucong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yue Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Zhang F, Tang C, Wang J, Lin T, Ge W, He C, Yang C, Zuo Z. Letrozole induced a polycystic ovary syndrome model in zebrafish by interfering with the hypothalamic-pituitary-gonadal axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123723. [PMID: 38452838 DOI: 10.1016/j.envpol.2024.123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, with an incidence of 5-10%. This study compared the traits of zebrafish with three diagnostic criteria for human PCOS, and the diagnostic criteria for zebrafish PCOS were proposed: decreased fecundity, elevated testosterone (T) or 11-ketotestosterone (11-KT) levels and increased cortical-alveolar oocyte (CO) ratio, enhancing the zebrafish PCOS model's accuracy. According to the mammalian PCOS classification, the type of zebrafsh PCOS is divided into four phenotypes (A, B, C and D), but the four phenotypes of zebrafish PCOS are not fully covered in the existing studies (A and D). In this study, we successfully induced phenotype B zebrafish PCOS model using the aromatase inhibitor, letrozole (LET). That is, wild-type female zebrafish were exposed to 1000 μg/L LET for 30 days. Reproductive tests showed decreased fecundity in female zebrafish exposed to LET (Control: 132.63, 146.00, 173.00; LET: 29.20, 90.00, 82.71). Hormone analysis showed that female zebrafish exposed to LET had significantly lower 17β-estradiol/testosterone (E2/T) ratios, indicating elevated T levels. Meanwhile, levels of 11-KT in the ovaries exposed to LET were significantly up-regulated (Control: 0.0076 pg/μg; LET: 0.0138 pg/μg). Pathological sections of the ovary showed fewer CO in the LET-exposed group (Control: 16.27%; LET: 8.38%). In summary, the zebrafish PCOS model summarized and studied in this study provide a reliable and economical tool for the screening of therapeutic drugs, as well as for the etiology research and treatment strategies of PCOS.
Collapse
Affiliation(s)
- Fucong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jingyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Tingting Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Shao X, Xiao D, Yang Z, Jiang L, Li Y, Wang Y, Ding Y. Frontier of toxicology studies in zebrafish model. J Appl Toxicol 2024; 44:488-500. [PMID: 37697940 DOI: 10.1002/jat.4543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Based on the 87 original publications only from quartiles 1 and 2 of Journal Citation Report (JCR) collected by the major academic databases (Science Direct, Web of Science, PubMed, and Wiley) in 2022, the frontier of toxicology studies in zebrafish model is summarized. Herewith, a total of six aspects is covered such as developmental, neurological, cardiovascular, hepatic, reproductive, and immunizing toxicities. The tested samples involve chemicals, drugs, new environmental pollutants, nanomaterials, and its derivatives, along with those related mechanisms. This report may provide a frontier focus benefit to researchers engaging in a zebrafish model for environment, medicine, food, and other fields.
Collapse
Affiliation(s)
- Xinting Shao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xiao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyi Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Jiang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Berlivet J, Payrastre L, Rebouillat P, Fougerat A, Touvier M, Hercberg S, Lairon D, Pointereau P, Guillou H, Vidal R, Baudry J, Kesse-Guyot E. Association between dietary pesticide exposure profiles and body weight change in French adults: Results from the NutriNet-Santé cohort. ENVIRONMENT INTERNATIONAL 2024; 184:108485. [PMID: 38350259 DOI: 10.1016/j.envint.2024.108485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Pesticides cause a wide range of deleterious health effects, including metabolic disorders. Little is known about the effects of dietary pesticide exposure on body weight (BW) change in the general population. We aimed to investigate the role of dietary pesticide exposure in BW change among NutriNet-Santé participants, focusing on potential sexual dimorphism. METHODS Participants completed a Food Frequency Questionnaire (2014), assessing conventional and organic food consumption. Dietary exposure from plant foods of 25 commonly used pesticides was estimated using a residue database, accounting for agricultural practices (conventional and organic). Exposure profiles based on dietary patterns were computed using Non-negative Matrix Factorization (NMF). Mixed models were used to estimate the associations between BW change and exposure to pesticide mixtures, overall and after stratification by sex and menopausal status. RESULTS The final sample included 32,062 participants (8,211 men, 10,637 premenopausal, and 13,214 postmenopausal women). The median (IQR) follow-up was 7.0 (4.4; 8.0) years. Four pesticides profiles were inferred. Overall, men and postmenopausal women lost BW during follow-up, whereas premenopausal women gained BW. Higher exposure to NMF3, reflecting a lower exposure to synthetic pesticides, was associated with a lower BW gain, especially in premenopausal women (β(95 %CI) = -0.04 (-0.07; 0) kg/year, p = 0.04). Higher exposure to NMF2, highly positively correlated with a mixture of synthetic pesticides (azoxystrobin, boscalid, chlorpropham, cyprodinil, difenoconazole, fenhexamid, iprodione, tebuconazole, and lamda-cyhalothrin), was associated with a higher BW loss in men (β(95 %CI) = -0.05 (-0.08; -0.03) kg/year, p < 0.0001). No associations were observed for NMF1 and 4. CONCLUSIONS This study suggests a role of pesticide exposure, inferred from dietary patterns, on BW change, with sexually dimorphic actions, including a potential role of a lower exposure to synthetic pesticides on BW change in women. In men, exposure to a specific pesticide mixture was associated with higher BW loss. The underlying mechanisms need further elucidation.
Collapse
Affiliation(s)
- Justine Berlivet
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Laurence Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Pauline Rebouillat
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Mathilde Touvier
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| | - Serge Hercberg
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Public Health Department, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France.
| | - Denis Lairon
- Aix Marseille Université, Inserm, INRAE, C2VN, 13005, Marseille, France.
| | | | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Rodolphe Vidal
- Institut de l'Agriculture et de l'Alimentation Biologiques (ITAB), 149 rue de Bercy 75595, Paris, France.
| | - Julia Baudry
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France
| | - Emmanuelle Kesse-Guyot
- Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Nutritional Epidemiology Research Team (EREN), F-93017, Bobigny, France.
| |
Collapse
|
11
|
Huang W, Shi X, Zhang Q, Chen Y, Zheng S, Wu W, Luo C, Wu K. Transgenerational effects of BDE-47 to zebrafish based on histomorphometry and toxicogenomic analyses. CHEMOSPHERE 2023; 344:140401. [PMID: 37839753 DOI: 10.1016/j.chemosphere.2023.140401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Exposure to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) has been found to have an impact on reproductive output and endocrine function in female zebrafish (Danio rerio). However, the transgenerational effects of BDE-47 have not been fully explored in previous reports. In this study, female zebrafish were exposed to BDE-47 for three consecutive weeks. The oogenesis, sex hormones, reproductive histology, and transcriptional profiles of genes along the hypothalamus-pituitary-gonad (HPG) axis were assessed in the exposed-F0 generation. After mating with unexposed males, the transgenerational effects of BDE-47 were evaluated on the basis of histopathology, morphometry and toxicogenome of the unexposed F1 generations at the larval stage. Results indicated that exposure to BDE-47 impaired reproductive capacity, disrupted endocrine system in F0 zebrafish, and compromised craniofacial skeletons and vertebrae development in F1 generations. In addition, through the use of toxicogenomics approach, immune-responsive pathways were found to be significantly enriched, and the transcript expression profiling of immune-related DEGs (IRDs) were dramatically inhibited in F1 generations following maternal BDE-47 exposure, indicating its immunotoxicity to offspring larvae. These findings advance our understanding of the transgenerational toxicity of BDE-47 and advocate for a more comprehensive assessment of other PBDE congeners through histomorphometry and toxicogenomic approaches.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yuequn Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|