1
|
Wang R, Yang S, Zhao W. Microbial Community Responses and Nitrogen Cycling in the Nitrogen-Polluted Urban Shi River Revealed by Metagenomics. Microorganisms 2025; 13:1007. [PMID: 40431180 PMCID: PMC12114610 DOI: 10.3390/microorganisms13051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Nitrogen pollution in urban rivers, exacerbated by rapid urbanization, poses a growing threat to water quality. Microbial communities are essential in mediating nitrogen cycling and mitigating pollution in these ecosystems. This study integrated three-year (2021-2023) water quality monitoring with metagenomic sequencing to investigate microbial community dynamics, nitrogen cycling processes, and their responses to nitrogen pollution in the Shi River, Qinhuangdao, China. Nitrogen pollution was predominantly derived from industrial discharges from enterprises in the Shi River Reservoir upstream (e.g., coolant and chemical effluents), agricultural runoff, untreated domestic sewage (particularly from catering and waste in Pantao Valley), and livestock farming effluents. Total nitrogen (TN) concentrations ranged from 2.22 to 6.44 mg/L, exceeding China's Class V water standard (2.0 mg/L, GB 3838-2002), with the highest level at the urbanized W4 site (6.44 mg/L). Nitrate nitrogen (NO3-N) accounted for 60-80% of TN. Metagenomic analysis revealed Fragilaria, Microcystis, and Flavobacterium thriving (up to 15% relative abundance) under nitrogen stress, with nitrogen metabolism genes (narG, nifH, nirK) enriched at polluted sites (W2, W4), narG reaching 26% at W1. Dissolved oxygen positively correlated with nitrate reductase gene abundance, while ammonia nitrogen inhibited it. Burkholderiales and Limnohabitans dominated denitrification, offering insights into sustainable urban river management.
Collapse
Affiliation(s)
| | | | - Wei Zhao
- College of Heilongjiang River and Lake Chief, Heilongjiang University, Harbin 150080, China; (R.W.); (S.Y.)
| |
Collapse
|
2
|
Sun D, Feng C, Zhan Y, Deng B, Mei D, Chen N, Hu W. Disentangling microbial coupled fillers mechanisms for the permeable layer optimization process in multi-soil-layering systems. J Environ Sci (China) 2025; 147:538-549. [PMID: 39003069 DOI: 10.1016/j.jes.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 07/15/2024]
Abstract
The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.
Collapse
Affiliation(s)
- Daxin Sun
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Yongheng Zhan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bingbing Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Duoduo Mei
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Weiwu Hu
- Journal Center, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
3
|
Lun J, Zhou W, Sun M, Li N, Shi W, Gao Z, Li M. Meta-analysis: Global patterns and drivers of denitrification, anammox and DNRA rates in wetland and marine ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176694. [PMID: 39366563 DOI: 10.1016/j.scitotenv.2024.176694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Nitrogen cycling is one of the most important biogeochemical processes on Earth, and denitrification, anammox and DNRA processes are important nitrogen cycling processes in estuarine ecosystems. However, due to the large input of anthropogenic nitrogen sources, a large number of environmental problems have now occurred in the estuary. But the global patterns and controlling factors of denitrification, anammox and DNRA rates in wetland marine ecosystems are not yet known. We reached our conclusions through a global synthesis of 546 observation sites from 78 peer-reviewed papers: The three rates were generally higher in areas near wetlands than in coastal areas. The rate of denitrification was highest in the subtropical region the seasonal variability was not significant; and TOC was the main factor controlling denitrification. The rate of anammox was significantly higher in the subtropical region than in the tropical and boreal zones, and the seasonal variability was significant; and at the same time, TN was the main driver of the anammox rate of the wetland ocean. DNRA rates were significantly higher in the tropics than in the subtropics and temperate zones; and the main driver of DNRA rates was temperature. Nitrogen cycle functional genes also had an indirect effect on their rates. With NH4 + -N significantly affecting nirK abundance and TN significantly affecting the gene abundance of nirS; TOC and TN had a greater effect on hzo abundance, which indirectly affected anammox rates; for DNRA, C/N significantly affects the gene abundance of nrfA, which indirectly affects the DNRA rate. Therefore, the findings of this study indicate that physicochemical indicators about N and climatic characteristics have a profound effect on the nitrogen cycling process, which provides a good feedback for studying the role of denitrification and provides a positive impact on global climate and environmental governance.
Collapse
Affiliation(s)
- Jiaqi Lun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Wenxi Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Mengyue Sun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Na Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Wenchong Shi
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China.
| | - Mingcong Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
4
|
Zhang C, Rao W, Wu Z, Zheng F, Li T, Li C, Lei X, Xie H, Xiaodong Chu. Anthropogenic impacts and quantitative sources of nitrate in a rural-urban canal using a combined PMF, δ 15N/δ 18O-NO 3-, and MixSIAR approach. ENVIRONMENTAL RESEARCH 2024; 251:118587. [PMID: 38437903 DOI: 10.1016/j.envres.2024.118587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Nitrate (NO3-) pollution in irrigation canals is of great concern because it threatens canal water use; however, little is known about it at present. Herein, a combination of positive matrix factorization (PMF), isotope tracers, and Mixing Stable Isotope Analysis in R (MixSIAR) was developed to identify anthropogenic impacts and quantitative sources of NO3- in a rural-urban canal in China. The NO3- concentration (0.99-1.93 mg/L) of canal water increased along the flow direction and was higher than the internationally recognized eutrophication risk value in autumn and spring. The inputs of the Fuhe River, NH4+ fertilizer, soil nitrogen, manure & sewage, and rainfall were the main driving factors of canal water NO3- based on principal component analysis and PMF, which was supported by evidence from δ15N/δ18O-NO3-. According to the chemical and isotopic analyses, nitrogen transformation was weak, highlighting the potential of δ15N/δ18O-NO3- to trace NO3- sources in canal water. The MixSIAR and PMF results with a <15% divergence emphasized the predominance of the Fuhe River (contributing >50%) and anthropogenic impacts (NH4+ fertilizer plus manure & sewage, >37%) on NO3- in the entire canal, reflecting the effectiveness of the model analysis. According to the MixSIAR model, (1) higher NO3- concentration in canal water was caused by the general enhancement of human activities in spring and (2) NO3- source contributions were associated with land-use patterns. The high contributions of NH4+ fertilizer and manure & sewage showed inverse spatial variations, suggesting the necessity of reducing excessive fertilizer use in the agricultural area and controlling blind wastewater release in the urban area. These findings provide valuable insights into NO3- dynamics and fate for sustainable management of canal water resources. Nevertheless, long-term chemical and isotopic monitoring with alternative modeling should be strengthened for the accurate evaluation of canal NO3- pollution in future studies.
Collapse
Affiliation(s)
- Chi Zhang
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Wenbo Rao
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China.
| | - Zhihua Wu
- Jiangxi Authority of Water Conservancy Project of the Ganfu Plain, No. 2, Fazhan Road, High-Tech Development District, Nanchang 330096, China
| | - Fangwen Zheng
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Qingshanhu District, No. 59, Beijingdong Road, Nanchang 330099, China
| | - Tianning Li
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Chao Li
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Xiang Lei
- College of Earth Sciences and Engineering, Jiangning Campus of Hohai University, No. 8, Fochengxi Road, Jiangning District, Nanjing 211100, China
| | - Hengwang Xie
- Jiangxi Authority of Water Conservancy Project of the Ganfu Plain, No. 2, Fazhan Road, High-Tech Development District, Nanchang 330096, China
| | - Xiaodong Chu
- Jiangxi Institute of Geo-Environment Monitoring, Nanchang 330095, China
| |
Collapse
|
5
|
Bowen JL, Spivak AC, Bernhard AE, Fulweiler RW, Giblin AE. Salt marsh nitrogen cycling: where land meets sea. Trends Microbiol 2024; 32:565-576. [PMID: 37827901 DOI: 10.1016/j.tim.2023.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Salt marshes sit at the terrestrial-aquatic interface of oceans around the world. Unique features of salt marshes that differentiate them from their upland or offshore counterparts include high rates of primary production from vascular plants and saturated saline soils that lead to sharp redox gradients and a diversity of electron acceptors and donors. Moreover, the dynamic nature of root oxygen loss and tidal forcing leads to unique biogeochemical conditions that promote nitrogen cycling. Here, we highlight recent advances in our understanding of key nitrogen cycling processes in salt marshes and discuss areas where additional research is needed to better predict how salt marsh N cycling will respond to future environmental change.
Collapse
Affiliation(s)
- Jennifer L Bowen
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Rd, Nahant, MA, USA.
| | - Amanda C Spivak
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Anne E Bernhard
- Biology Department, Connecticut College, New London, CT 06320, USA
| | - Robinson W Fulweiler
- Department of Earth and Environment, Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, MA 02543, USA
| |
Collapse
|
6
|
Han D, Hong Y, Wu J, Xian H, Dong X, Liu H, Ye F, Wang Y. Salinity and pH related microbial nitrogen removal in the largest coastal lagoon of Chinese mainland (Pinqing Lagoon). MARINE POLLUTION BULLETIN 2024; 201:116181. [PMID: 38394796 DOI: 10.1016/j.marpolbul.2024.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Coastal lagoon is critical habitat for human and provides a wide range of ecosystem services. These vital habitats are now threatened by waste discharge and eutrophication. Previous studies suggest that the pollution mitigation of coastal lagoon relies on the water exchange with open sea, and the role of microbial processes inside the lagoon is overlooked. This study takes the Pinqing Lagoon which is the largest coastal lagoon in Chinese mainland as example. The distribution of nutrients, microbial activity of nitrogen removal and community structure of denitrifying bacteria in sediment are analyzed. The results showed that the nutrient in sediment represented by DIN (1.65-12.78 mg kg-1), TOM (0.59-8.72 %) and TN (0.14-1.93 mg g-1) are at high levels and are enriched at the terrestrial impacted zone (TZ). The microbial nitrogen removal is active at 0.27-19.76 μmol N kg-1 h-1 in sediment and denitrification is the dominate pathway taking 51.44-98.71 % of total N removal. The composition of the denitrifying microbial community in marine impacted zone (MZ) is close to that of ocean and estuary, but differs considerably with those of TZ and transition zone (TM). The denitrification activity is mainly controlled by salinity and pH, and the denitrifying bacterial community composition related to the nutrient parameters of TN, TOM, etc. Our study suggested that the distribution of nutrients, microbial activity of nitrogen removal and community structure in Lagoon are the combined effects of terrestrial input and exchange with open sea. The microbial processes play important role in the nitrogen removal of coastal lagoon.
Collapse
Affiliation(s)
- Dongchen Han
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hanbiao Xian
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Xuhui Dong
- School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
| | - Honglei Liu
- Tianjin Academy of Eco-environmental Sciences, Tianjin 300191, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Jiang C, Wu J, Ye J, Hong Y. High throughput amplicon analysis reveals potential novel ammonia oxidizing prokaryotes in the eutrophic Jiaozhou Bay. MARINE POLLUTION BULLETIN 2024; 200:116046. [PMID: 38246016 DOI: 10.1016/j.marpolbul.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Ammonia-oxidizing prokaryotes (AOPs) are the major contributors of ammonia oxidization with widely distribution. Here we investigated the phylogenetic diversity, community composition, and regulating factors of AOPs in Jiaozhou Bay (JZB) with high-throughput sequencing of amoA gene. Phylogenetic analysis showed most of the OTUs could not be clustered with any known AOPs, indicating there might exist putative novel AOPs. With new developed protocols for AOP community analysis, we confirmed that only 3 OTUs of ammonia-oxidizing archaea (AOA) could be affiliated to known Nitrosopumilaceae and Nitrososphaera, and the other OTUs were identified as novel AOA based on the threshold. All abstained OTUs of ammonia-oxidizing bacteria (AOB) were identified as novel clusters based on the threshold. Further analysis showed the novel AOPs had different distribution characteristics related to environmental factors. The high abundance and widespread distribution of these novel AOPs indicated that they played an important role in ammonia conversion in eutrophic JZB.
Collapse
Affiliation(s)
- Cuihong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jiaqi Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Deng D, He G, Ding B, Liu W, Yang Z, Ma L. Denitrification dominates dissimilatory nitrate reduction across global natural ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17256. [PMID: 38532549 DOI: 10.1111/gcb.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are three competing processes of microbial nitrate reduction that determine the degree of ecosystem nitrogen (N) loss versus recycling. However, the global patterns and drivers of relative contributions of these N cycling processes to soil or sediment nitrate reduction remain unknown, limiting our understanding of the global N balance and management. Here, we compiled a global dataset of 1570 observations from a wide range of terrestrial and aquatic ecosystems. We found that denitrification contributed up to 66.1% of total nitrate reduction globally, being significantly greater in estuarine and coastal ecosystems. Anammox and DNRA could account for 12.7% and 21.2% of total nitrate reduction, respectively. The contribution of denitrification to nitrate reduction increased with longitude, while the contribution of anammox and DNRA decreased. The local environmental factors controlling the relative contributions of the three N cycling processes to nitrate reduction included the concentrations of soil organic carbon, ammonium, nitrate, and ferrous iron. Our results underline the dominant role of denitrification over anammox and DNRA in ecosystem nitrate transformation, which is crucial to improving the current global soil N cycle model and achieving sustainable N management.
Collapse
Affiliation(s)
- Danli Deng
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Gang He
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Bangjing Ding
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Zhengjian Yang
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
| | - Lin Ma
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
9
|
Wu D, Xu Z, Min S, Wang J, Min J. Characteristics of microbial community structure and influencing factors of Yangcheng Lake and rivers entering Yangcheng Lake during the wet season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9565-9581. [PMID: 38191738 DOI: 10.1007/s11356-023-31810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Yangcheng Lake, a typical fishery lake in the middle and lower reaches of the Yangtze River, is threatened by eutrophication. As the main performers of biogeochemical cycles, microorganisms affect the ecological stability of the lake. To study the structural characteristics of the microbial community in Yangcheng Lake and rivers entering Yangcheng Lake and the response relationship with environmental factors, the microbial community was categorized based on the contour of Yangcheng Lake, the major rivers entering Yangcheng Lake, and the pollution sources. The distribution characteristics of seven physicochemical indices were analyzed, including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), water temperature (WT), pH, dissolved oxygen (DO), and ratio of total nitrogen to total phosphorus (TN/TP). Characterization of microbial community structure based on 16S rRNA high-flux sequencing technology and ANOSIM analysis were used to explore the differences in the relative abundance of microorganisms at each sampling point in the lake and rivers, and redundancy analysis (RDA) was used to analyze the relationship between the microbial community and physicochemical factors. The results showed that the dominant phyla, genera of microorganisms, and the total number of OTUs in the lake and rivers were similar. The dominant phyla included Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Verrucomicrobia; the dominant genera included the hgcI clade, CL500-29 marine group, Microcystis PCC-7914, Chloroplast_norank, Clade III_norank, and Flavobacterium. ANOSIM analyses revealed that the microbial community of Yangcheng Lake exhibited an association with geographical space, while the microbial community in the rivers that was linked to the type of pollution source. Redundancy analysis (RDA) indicated that dissolved oxygen (DO), total nitrogen (TN), and pH were significantly correlated with the dominant phyla in Yangcheng Lake (p < 0.05), while total nitrogen (TN), water temperature(WT), and the ratio of total nitrogen to total phosphorus (TN/TP) were significantly related with the dominant genera in Yangcheng Lake (p < 0.05). Total nitrogen (TN) was also significantly linked to the dominant phyla and genera of the tributaries (p < 0.05). Despite the structural similarities in microbial communities between Yangcheng Lake and its inflowing rivers, environmental factors demonstrated significant associations with these communities, providing crucial data support for pollution prevention and the ecological restoration of Yangcheng Lake.
Collapse
Affiliation(s)
- Dan Wu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
| | - Zhipeng Xu
- Kunshan Water Conservancy Design Institute Co., Ltd., Suzhou, 215300, People's Republic of China.
| | - Songao Min
- Kunshan Bacheng Construction Bureau, Suzhou, 215300, People's Republic of China
| | - Jinhui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiang Min
- Kunshan United Water Purification Co., Suzhou, 215300, People's Republic of China
| |
Collapse
|
10
|
Samperio-Ramos G, Hernández-Sánchez O, Camacho-Ibar VF, Pajares S, Gutiérrez A, Sandoval-Gil JM, Reyes M, De Gyves S, Balint S, Oczkowski A, Ponce-Jahen SJ, Cervantes FJ. Ammonium loss microbiologically mediated by Fe(III) and Mn(IV) reduction along a coastal lagoon system. CHEMOSPHERE 2024; 349:140933. [PMID: 38092166 DOI: 10.1016/j.chemosphere.2023.140933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Anaerobic ammonium oxidation, associated with both iron (Feammox) and manganese (Mnammox) reduction, is a microbial nitrogen (N) removal mechanism recently identified in natural ecosystems. Nevertheless, the spatial distributions of these non-canonical Anammox (NC-Anammox) pathways and their environmental drivers in subtidal coastal sediments are still unknown. Here, we determined the potential NC-Anammox rates and abundance of dissimilatory metal-reducing bacteria (Acidomicrobiaceae A6 and Geobacteraceae) at different horizons (0-20 cm at 5 cm intervals) of subtidal coastal sediments using the 15N isotope-tracing technique and molecular analyses. Sediments were collected across three sectors (inlet, transition, and inner) in a coastal lagoon system (Bahia de San Quintin, Mexico) dominated by seagrass meadows. The positive relationship between 30N2 production rates and dissimilatory Fe and Mn reduction provided evidence for Feammox's and Mnammox's co-occurrence. N loss through NC-Anammox was detected in subtidal sediments, with potential rates of 0.07-0.62 μg N g-1 day-1. NC-Anammox process in vegetated sediments tended to be higher than those in adjacent unvegetated ones. NC-Anammox rates showed a subsurface peak (between 5 and 15 cm) in the vegetated sediments but decreased consistently with depth in the adjacent bare bottoms. Thus, the presence/absence of seagrasses and sediment characteristics, particularly the availability of organic carbon and microbiologically reducible Fe(III) and Mn(IV), affected the abundance of dissimilatory metal-reducing bacteria, which mediated NC-Anammox activity and the associated N removal. An annual loss of 32.31 ± 3.57 t N was estimated to be associated with Feammox and Mnammox within the investigated area, accounting for 2.8-4.7% of the gross total import of reactive N from the ocean into the Bahia de San Quintin. Taken as a whole, this study reveals the distribution patterns and controlling factors of the NC-Anammox pathways along a coastal lagoon system. It improves our understanding of the coupling between N and trace metal cycles in coastal environments.
Collapse
Affiliation(s)
- Guillermo Samperio-Ramos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico.
| | - Oscar Hernández-Sánchez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Víctor F Camacho-Ibar
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aaron Gutiérrez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - José Miguel Sandoval-Gil
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Mauricio Reyes
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Sebastian De Gyves
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico; Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Sawyer Balint
- ORISE Participant, Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, RI, USA
| | - Autumn Oczkowski
- Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, RI, USA
| | - Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
11
|
Shi J, Wang Y, Lu S, Wang J, Liu J. Pilot study on ceramic flat membrane bioreactor in treatment of coal chemical wastewater. CHEMOSPHERE 2024; 347:140701. [PMID: 37967674 DOI: 10.1016/j.chemosphere.2023.140701] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Some toxic and refractory pollutants in coal chemical wastewater can penetrate the biochemical treatment systems and cause high concentrations of suspended solids in the effluent, which may obstruct the subsequent advanced treatment. In this project, a submerged ceramic plate membrane system was integrated to the last oxic corridor of an existing multistage anoxic/oxic tank. In the ceramic flat membrane bioreactor, the influent chemical oxygen demand (COD) was 102.24-178.88 mg/L, with a removal ratio of approximately 30%. The NH3-N concentration in the effluent was relatively stable with an average value of 1.76 mg/L. The turbidity of the effluent was in the range of 0.235-0.852 NTU and was stable below 1 NTU. A flux of 30 L m-2·h-1 could meet the requirements of the pilot test. A gas-water ratio of 50:1 was found optimal. When the concentration of mixed liquor suspended solids (MLSS) was >3769 mg/L, the extracellular polymeric substance in the mixed solution was utilized by microorganisms as a substrate. High MLSS decreased membrane fouling rate. NaClO backwashing can effectively remove pollutants without adversely affecting the treatment efficiency of membrane bioreactors.
Collapse
Affiliation(s)
- Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yarui Wang
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Simin Lu
- College of Environment, South China Normal University, Guangzhou, 510006, China
| | - Jiahui Wang
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jingchun Liu
- Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd, Shanghai, 744000, China.
| |
Collapse
|
12
|
Wang Z, Liu K. Nutrients transport behavior in inlet river in the Yellow River Delta in winter. MARINE POLLUTION BULLETIN 2023; 197:115815. [PMID: 37984090 DOI: 10.1016/j.marpolbul.2023.115815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
The nutrients such as dissolved inorganic nitrogen (DIN, NH4+-N, NO2--N, and NO3--N), dissolved inorganic phosphorus (DIP, PO43-) and dissolved SiO2 (DSi) funneled by the inlet river are the dominant factors to coastal eutrophication. This study investigated nutrient transport process in typical inlet rivers in the Yellow River Delta. The indicator of coastal eutrophication potential and concentration ratio between upstream and downstream stations were used to evaluate the influence of different sources to the nutrient risks. It showed that urban areas are the most important source of the nutrients in studied rivers. The harbor and mariculture would have greater risk because of their proximity close to the coastal area. Wetland was a vital conversion to eliminate the river nutrients, and the retention could reach 80 %. It is imperative to protect and construct wetlands to reduce the nutrient pollution in the inlet river.
Collapse
Affiliation(s)
- Zhaohua Wang
- First Institute of Oceanography, MNR, Qingdao 266061, China
| | - Kai Liu
- Dongying Marine Development Research Institute, Dongying 257091, China.
| |
Collapse
|
13
|
Brewton RA, Lapointe BE. Eutrophication leads to food web enrichment and a lack of connectivity in a highly impacted urban lagoon. MARINE POLLUTION BULLETIN 2023; 195:115441. [PMID: 37683393 DOI: 10.1016/j.marpolbul.2023.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
Nitrogen (N) loading can affect estuarine food webs through alteration of primary producers. In the Indian River Lagoon (IRL), Florida there has been long-term N enrichment, worsening phytoplankton blooms, large-scale macroalgal blooms, and catastrophic seagrass losses. To investigate how N enrichment affects higher trophic levels and food webs in the IRL, nutrient availability was compared to primary producer and faunal stable N (δ15N) isotope values. Seawater samples were collected in the IRL for dissolved nutrient, chlorophyll-a, and particulate organic matter δ15N analyses. Macrophytes and fauna were also collected for δ15N analyses. Throughout the IRL, N was elevated but was highest in the northern IRL and Banana River Lagoon. δ15N was enriched in these segments for most samples to levels characteristic of human-waste impacted estuaries. Variability in δ15N among lagoon segments suggests a low level of trophic connectivity. Decreasing N loading to the IRL and other eutrophic estuaries may help improve resiliency.
Collapse
Affiliation(s)
- Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, Florida 34946, USA.
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, Florida 34946, USA
| |
Collapse
|
14
|
Feng L, Zhang Z, Yang G, Wu G, Yang Q, Chen Q. Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. ENVIRONMENTAL RESEARCH 2023; 225:115590. [PMID: 36863651 DOI: 10.1016/j.envres.2023.115590] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Coastal waters are often influenced by seawater intrusion and terrestrial emissions because of its special location. In this study, the dynamics of microbial community with the role of nitrogen cycle in sediment in a coastal eutrophic lake were studied under a warm season. The water salinity gradually increased from 0.9‰ in June to 4.2‰ in July and 10.5‰ in August because of seawater invasion. Bacterial diversity of surface water was positively related with salinity and nutrients of total nitrogen (TN) as well as total phosphorus (TP), but eukaryotic diversity had no relationship with salinity. In surface water, algae belonging to Cyanobacteria and Chlorophyta were dominant phyla in June with the relative abundances of >60%, but Proteobacteria became the largest bacterial phylum in August. The variation of these predominant microbes had strong relationship with salinity and TN. In sediment, the bacterial and eukaryotic diversity was greater than that of water, and a significantly different microbial community was observed with dominant bacterial phyla Proteobacteria and Chloroflexi, and dominant eukaryotic phyla Bacillariophyta, Arthropoda, and Chlorophyta. Proteobacteria was the only enhanced phylum in the sediment with the highest relative abundance of 54.62% ± 8.34% due to seawater invasion. Denitrifying genera (29.60%-41.81%) were dominant in surface sediment, then followed by microbes related to nitrogen fixation (24.09%-28.87%), assimilatory nitrogen reduction (13.54%-19.17%), dissimilatory nitrite reduction to ammonium (DNRA, 6.49%-10.51%) and ammonification (3.07%-3.71%). Higher salinity caused by seawater invasion enhanced the accumulation of genes involved in dentrificaiton, DNRA and ammonification, but decreased genes related to nitrogen fixation and assimilatory nitrogen reduction. Significant variation of dominant genes of narG, nirS, nrfA, ureC, nifA and nirB mainly caused by the changes in Proteobacteria and Chloroflexi. The discovery of this study would be helpful to understand the variation of microbial community and nitrogen cycle in coastal lake under seawater intrusion.
Collapse
Affiliation(s)
- Lijuan Feng
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Zeliang Zhang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| | - GuiYang Wu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Qiao Yang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China; Donghai Laboratory, Zhoushan, 316022, People's Republic of China
| | - Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| |
Collapse
|
15
|
Chang SH, Lin CW, Cheng YS, Liu SH. Effects of biodegradation, biotoxicity and microbial community on biostimulation of sulfolane. CHEMOSPHERE 2023; 319:138047. [PMID: 36739988 DOI: 10.1016/j.chemosphere.2023.138047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To evaluate the effectiveness of biostimulation in remediating soil-free groundwater and groundwater with soil, experiments were conducted using soil and groundwater samples that were contaminated with sulfolane. The main objective was to characterize the differences in sulfolane removal efficiency and biotoxicity between in situ soil-free groundwater and groundwater with soil and different concentrations of dissolved oxygen (1 mg/L and 5 mg/L) and various nutrient salts (in situ and spiked). Optimizing the nutrient salt conditions improved the removal efficiency of sulfolane by 1.8-6.5 that under in situ nutrient salt conditions. Controlling the dissolved oxygen concentration enhanced the efficiency of removal of sulfolane by 1.5-4.5 times over that at the simulated in situ dissolved oxygen concentration, suggesting that the degradation of sulfolane by indigenous microorganisms requires nutrient salts more than it requires dissolved oxygen. Biotoxicity data showed that the luminescence inhibition of Aliivibrio fischeri by sulfolane was lower in the biostimulated samples than in the pre-treated samples. Biostimulation reduced the biotoxicity of the treated samples by 42-51%, revealing that it was effective in removing sulfolane and reducing biotoxicity. Microbial community analysis showed that the biostimulation did not change the dominant species in the original in situ community, and increased the proportion of sulfolane-degraders. The outcome of this study can be used to set parameters for the remediation of groundwater that is contaminated by sulfolane in oil refineries.
Collapse
Affiliation(s)
- Shao-Heng Chang
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC; Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC; Bachelor's Program in Industrial Technology, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC.
| |
Collapse
|
16
|
Deng Y, Jiang J, Huang Y, Cheng C, Lin Z, Liu G, Guo Z, Feng J. Hypoxia triggers the proliferation of antibiotic resistance genes in a marine aquaculture system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160305. [PMID: 36410487 DOI: 10.1016/j.scitotenv.2022.160305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The transmission of antibiotic resistance genes (ARGs) affects the safety of aquaculture animals. Dissolved oxygen (DO) can affect the transmission of ARGs, but its mechanism of action in this process is unclear. We conducted laboratory breeding experiment with low and control DO groups. Combined quantitative PCR and 16S rRNA sequencing to study the effect of DO on the spread of ARGs. Hypoxia treatment significantly increased the accumulation of ammonium and nitrite in aquaculture water, and it increased the relative abundances of ARGs and mobile genetic elements (MGEs), especially the ARGs resistant to drugs in the categories of sulfonamide, (flor)/(chlor)/(am)phenicol, and MLSB (macrolide, lincosamide and streptogramin B) and the MGE intI-1(clinic), by 2.39-95.69 % in 28 days relative to the control DO treatment. Though the abundance of ARG carries, especially the Rhodocyclaceae, Caldilineaceae, Cyclobacteriaceae, Saprospiraceae, Enterobacteriaceae, Sphingomonadaceae families, showed higher abundance in low DO groups, relating to the vertical transmission of ARGs. Hypoxia treatment is more likely to promote the horizontal gene transfer (HGT)-related pathways, including ABC transporters, two component system, and quorum sensing, thus to induce the HGT of ARGs. The changed bacterial proliferation also altered the abundance of MGEs, especially intI-1(clinic), which induced HGT of ARGs as well. Additionally, pearson correlation results revealed that the succession of bacterial community function played the strongest role in ARG proliferation, followed by bacterial community structure and MGEs. Our results highlight the importance of suitable DO concentration in controlling the spread of ARGs especially the HGT of ARGs. In the context of global attention to food safety, our results provide important information for ensuring the safety of aquatic products and the sustainable development of aquaculture.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jianjun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yinbang Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Ziyang Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Guangxin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|