1
|
Premarathne I, Peng SW, Tseng YC, Chen GF, Su YJ, Chen WH. Degradation of N-methylbenzylamine and N,N-dimethylbenzylamine in anaerobic biological reactors and formation of N-nitrosomethylbenzylamine and N-nitrosodimethylamine during subsequent chloramination. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137446. [PMID: 39892126 DOI: 10.1016/j.jhazmat.2025.137446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
As water reuse demand increases, wastewater treatment plants must manage byproducts effectively while ensuring safety. The excessive use of benzalkonium chloride disinfectants can lead to the accumulation of benzylamines, such as N-methylbenzylamine (MBA) and N,N-dimethylbenzylamine (DMBA). Biological anaerobic treatment is becoming more popular due to concerns over energy consumption and carbon emissions. Our study examined the biodegradation of MBA and DMBA during anaerobic treatment and their effects on toxic byproduct formation during subsequent chloramination, as well as their impact on bioreactor performance, degradation pathways, and microbial communities. Our results showed that anaerobic bioreactors had minimal impact on overall treatment performance despite the presence of MBA and DMBA. MBA proved resistant to biodegradation, whereas DMBA underwent significant biodegradation. Notably, during chloramination, MBA effluent formed nitroso-MBA with a 1 % molar yield, whereas DMBA effluent had significant N-nitrosodimethylamine formation, with molar yields reaching 10 ± 1 % and 97 ± 7 % of the influent and residual DMBA concentrations. We observed significant differences in microbial communities between the DMBA reactor and the MBA and control reactors. Proposed degradation pathways and the involvement of specific microbial communities were detailed. These findings highlight the importance of thoroughly evaluating biologically treated effluent to manage the risks of toxic byproducts in water reuse.
Collapse
Affiliation(s)
- Iresha Premarathne
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shih-Wen Peng
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Chun Tseng
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Guan-Fu Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yu-Jih Su
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Geriatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; Institute of Biopharmaceutical Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wei-Hsiang Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Aerosol Science and Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Master and Doctoral Degree Program in Toxicology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
2
|
Liu Y, Zhang Z, Fang Y, Song Y, Li J, Feng Y. Assessing the long-term impact of incorporating GAC and Fe&G mediators for enhancing phenol containing simulated wastewater treatment in UASB reactor. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138459. [PMID: 40334595 DOI: 10.1016/j.jhazmat.2025.138459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Phenol containing wastewater (PCW) is highly toxic and difficult to be treated by traditional methods. This study utilized granular activated carbon (GAC) and Fe (Sponge iron) &GAC (Fe&G) in a laboratory-scale UASB reactor to mitigate the toxicity of phenol containing simulated wastewater (PCSW) and enhance treatment performance. Compared with GAC, Fe&G mediators achieves approximately 7 % and 24 % higher removal rates for COD and phenolic compounds, respectively. The methane accumulation in Fe&G group was about 10 % higher than that in GAC group and 22 % higher than that in blank group. Microbial analysis showed that compared with GAC, Fe&G mediators could enrich Petronas and Methanothrix to intensify Direct Interspecies Electron Transfer (DIET) to augment PCSW treatment and boost methane production. PICRUSt analysis showed that these mediators enriched key genes such as TCA cycle and CO2 methanogenesis pathway to improve microbial resistance to PCSW toxicity and enhance microbial metabolism. This study provides a new method for anaerobic treatment of highly polluted industrial wastewater.
Collapse
Affiliation(s)
- Yanbo Liu
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbin Fang
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanfang Song
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, China.
| |
Collapse
|
3
|
Zhang Z, Liu R, Zheng W, Lan Y, Li Y. Specialized genera and niche partitioning promote the biosynthesis of short-chain fatty acids in anaerobic cofermentation of sewage sludge and protein-rich waste. ENVIRONMENTAL RESEARCH 2025; 271:121034. [PMID: 39909096 DOI: 10.1016/j.envres.2025.121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Elucidating the relationships among various microorganisms and their reactions to environmental fluctuations, such as dissolved organic matter (DOM), remains a key objective in the anaerobic cofermentation (ACF) of sewage sludge (SS) and protein-rich waste (PRW); however, this topic is inadequately understood. In this study, the microbial traits associated with the biosynthesis of short-chain fatty acids (SCFAs) were investigated in the ACF of SS in conjunction with four distinct PRWs (pupa, fishmeal, maize gluten, and soybean meal). Compared with those in the SS-only reactor, the first-order rate constants for biosolid dissolution in the SS/PRW reactors were increased by 1.9-4.0-fold. Pupa performed best among the four PRWs in the ACF process, with the solubilization rate increasing from 9.4% (SS-only reactor) to 33.5%. The copious and readily biodegradable DOM created a unique niche for functional microbes, leading to reframing of the microfloral structure. Specialized genera, such as Holophaga, Alistipes, and Geothrix, were responsible for SCFA biosynthesis in the SS/pupa reactor. The highly differentiated, low-redundancy microecosystem constructed in the SS/pupa reactor contributed to the independent functioning of the hydrolyzers and acidogens, resulting in an SCFA yield that was 6.9-fold greater than that in the SS-only reactor. In addition, the ACF of SS/pupa resulted in the genes encoding the NiFe hydrogenase and Wood-Ljungdahl pathway being intact, which promoted the synthesis of SCFAs, especially acetate. These findings offer new insights into the microbiological mechanisms that augment SCFA generation by the ACF of SS/PRW in terms of microorganism fate, metabolic network relationships, and microecosystem niche.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Liu
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China.
| | - Wei Zheng
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China
| | - Yaqiong Lan
- Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314006, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Yang W, Liang Y, Wang S, Cai C, Wang X, Dai X, Chen X. Effects of quaternary ammonium disinfectants on human pathogenic bacteria in anaerobic sludge digestion: Dose-response and resistance variation. BIORESOURCE TECHNOLOGY 2025; 416:131745. [PMID: 39505280 DOI: 10.1016/j.biortech.2024.131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Sewage sludge is a critical reservoir for biological pollutants, and its harmless disposal remains a major issue. Quaternary ammonium compounds (QACs) as typical household disinfectants are inevitably concentrated in sewage sludge, and have the potential to affect human pathogenic bacteria (HPBs) that remain poorly understood. This study found that the relative abundance of HPBs in digesters was decreased by 10 - 20 % at low QACs dose, but increased by 238 - 591 % at high QACs dose. Mechanistic analysis revealed that low QACs doses promoted functional hydrolytic/fermentative bacteria and their metabolism by stimulating extracellular polymeric substances secretion and enhancing resistance to QACs. Conversely, high QAC doses decreased microbial biomass and developed QACs and antibiotic resistance of HPBs by increasing cell membrane permeability and triggering oxidative stress, resulting in deteriorating sanitation performance. These findings provide advanced insights into the potential function and hazards of exogenous QACs on the biosafety of digestate.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunfei Liang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiang Chen
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430010, China; National Engineering Research Center of Eco-environment Protection for Yangtze River Economic Belt, Wuhan 430010, China
| |
Collapse
|
5
|
Fundneider-Kale S, Kerres J, Engelhart M. Impact of benzalkonium chloride on anaerobic granules and its long-term effects on reactor performance. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135183. [PMID: 39024763 DOI: 10.1016/j.jhazmat.2024.135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
This study assessed the inhibitory and performance-degrading effects induced by the cationic surfactant benzalkonium chloride (BAC) on anaerobic granules during the long-term operation of a laboratory-scale expanded granular sludge bed (EGSB) reactor. To address the critical scientific problem of how BAC affects the efficiency of EGSB reactors, this research uniquely evaluated the long-term stress response to BAC by systematically comparing continuous and discontinuous inhibitor exposure scenarios. The novel comparison demonstrated that inhibitor concentration is of minor relevance compared to the biomass-specific cumulative inhibitor load in the reactor. After exceeding a critical biomass-specific cumulative inhibitor load of 6.1-6.5 mg BAC/g VS, continuous and discontinuous exposure to BAC caused comparable significant deterioration in reactor performance, including accumulation of volatile fatty acids (VFA), decreased removal efficiency, reduced methane production, as well as the wash-out, flotation, and disintegration of anaerobic granules. BAC exposures had a more detrimental effect on methanogenesis than on acidogenesis. Moreover, long-term stress by BAC led to an inhibition of protein production, resulting in a decreased protein-to-polysaccharide ratio of extracellular polymeric substances (EPS) that promoted destabilizing effects on the granules. Finally, hydrogenotrophic methanogenesis was triggered. Reactor performance could not be restored due to the severe loss of granular sludge.
Collapse
Affiliation(s)
- S Fundneider-Kale
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany.
| | - J Kerres
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - M Engelhart
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| |
Collapse
|
6
|
Rodrigues CV, Camargo FP, Lourenço VA, Sakamoto IK, Maintinguer SI, Silva EL, Amâncio Varesche MB. Towards a circular bioeconomy to produce methane by co-digestion of coffee and brewery waste using a mixture of anaerobic granular sludge and cattle manure as inoculum. CHEMOSPHERE 2024; 357:142062. [PMID: 38636915 DOI: 10.1016/j.chemosphere.2024.142062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS). Equal concentrations of substrates were added to all reactors: pulp and husk pretreated by hydrothermolysis (1 g L-1), coffee (10 g COD L-1) and brewery (1.5 g COD L-1) wastewaters. Assays A, B and C were supplemented with 2 g L-1 of yeast extract, except for assay D. The reactors were operated at 37 °C and pH 7.0. In assay B, the highest CH4 production of 759.15 ± 19.20 mL CH4 g-1 TS was observed, possibly favored by the synergistic interactions between cellulolytic bacteria Christensenellaceae_R-7_group and Methanosaeta archaea, as inferred by genes encoding enzymes related to acetoclastic methanogenesis (acetyl-CoA synthetase). Consequently, the electricity production potential of assay B (45614.08 kWh-1 year-1) could meet the energy demand of a farm producing coffee and beer, contributing to a positive energy balance concerning methane generation.
Collapse
Affiliation(s)
- Caroline Varella Rodrigues
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Vitor Alves Lourenço
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Sandra Imaculada Maintinguer
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), 2527 10 Street, Rio Claro, SP, 13500230, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP CEP, 13565905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| |
Collapse
|
7
|
Ge Y, Chen J, Xue Y, Xing W, Zhang L, Lu X, Liu J, Li F, Yang Q. Elimination of inhibitory effects of dodecyl dimethyl benzyl ammonium chloride on microalgae in wastewater by cocultivation with a newly screened microbial consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170676. [PMID: 38350567 DOI: 10.1016/j.scitotenv.2024.170676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
As one of the most commonly used biocidal cationic surfactants, benzalkonium chlorides (BACs) have been an increasing concern as emerging contaminants. Wastewater has been claimed the main point for BACs to enter into the environment, but to date, it is still largely unknown how the BACs affect the microbes (especially microalgae) in the practical wastewater and how to cost-effectively remove them. In this study, the inhibitory effects of a typical BACs, dodecyl dimethyl benzyl ammonium chloride (DDBAC), on a green microalga Chlorella sp. in oxidation pond wastewater were investigated. The results showed that though a hermetic effect at the first 2 days was observed with the DDBAC at low concentration (<6 mg/L), the algal growth and photosynthesis were significantly inhibited by the DDBAC at all the tested concentrations (3 to 48 mg/L). Fortunately, a new microbial consortium (MC) capable of degrading DDBAC was screened through a gradient domestication method. The MC mainly composed of Wickerhamomyces sp., Purpureocillium sp., and Achromobacter sp., and its maximum removal efficiency and removal rate of DDBAC (48 mg/L) respectively reached 98.1 % and 46.32 mg/L/d. Interestingly, a microbial-microalgal system (MMS) was constructed using the MC and Chlorella sp., and a synergetic effect between the two kinds of microorganisms was proposed: microalga provided oxygen and extracellular polysaccharides as co-metabolic substrates to help the MC to degrade DDBAC, while the MC helped to eliminate the DDBAC-induced inhibition on the alga. Further, by observing the seven kinds of degradation products (mainly including CH5O3P, C6H5CH2-, and C8H11N), two possible chemical pathways of the DDBAC degradation were proposed. In addition, the metagenomic sequencing results showed that the main functional genes of the MMS included antibiotic-resistant genes, ABC transporter genes, quorum sensing genes, two-component regulatory system genes, etc. This study provided some theoretical and application findings for the cost-effective pollution prevention of BACs in wastewater.
Collapse
Affiliation(s)
- Yaming Ge
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Juan Chen
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yu Xue
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wanchuan Xing
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Liang Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xinye Lu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Junzhi Liu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Fushan Li
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Qiao Yang
- ABI Group, Donghai Laboratory, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
8
|
Chen Z, Song B, Guo H, Xia D, Cai Y, Wang Y, Zhao W. Metagenomic characterization of biomethane transformation by lipid-catalyzed anaerobic fermentation of lignite. ENVIRONMENTAL RESEARCH 2023; 227:115777. [PMID: 36966989 DOI: 10.1016/j.envres.2023.115777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The present study aims at using lipid in a novel way to improve the efficiency of methane production from lignite anaerobic digestion. The obtained results showed an increase by 3.13 times of the cumulative biomethane content of lignite anaerobic fermentation, when 1.8 g lipid was added. The gene expression of functional metabolic enzymes was also found to be enhanced during the anaerobic fermentation. Moreover, the enzymes related to fatty acid degradation such as long-chain Acyl-CoA synthetase and Acyl-CoA dehydrogenase were increased by 1.72 and 10.48 times, respectively, which consequently, accelerated the conversion of fatty acid. Furthermore, the addition of lipid enhanced the carbon dioxide trophic and acetic acid trophic metabolic pathways. Hence, the addition of lipids was argued to promote the production of methane from lignite anaerobic fermentation, which provided a new insight for the conversion and utilization of lipid waste.
Collapse
Affiliation(s)
- Zhenhong Chen
- Research Institute of Petroleum Exploration & Development, Beijing, 100083, China.
| | - Bo Song
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Dapin Xia
- Mining Research Institute of Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yidong Cai
- School of Energy Resources, China University of Geosciences, Beijing, 100083, China.
| | - Yongjun Wang
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Weizhong Zhao
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
9
|
Wang H, Li H, Zhu L, Yang X, Zhang Q, Wang Y, Wang D. Effect and mechanism of benzalkonium bromide on short chain fatty acid production from anaerobic sludge fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118203. [PMID: 37235988 DOI: 10.1016/j.jenvman.2023.118203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Quaternary ammonium compounds (QACs) was frequently detected in wastewater treatment plants and leads to potential toxicity to the related biological processes. In this study, the effect of benzalkonium bromide (BK) on anaerobic sludge fermentation process for short chain fatty acid (SCFAs) production was investigated. Batch experiments indicated that BK exposure significantly enhanced the SCFAs production from anaerobic fermentation sludge and the maximum concentration of total SCFAs increased from 474.40 ± 12.35 mg/L to 916.42 ± 20.35 mg/L with BK increasing from 0 to 8.69 mg/g VSS. Mechanism exploration exhibited that the presence of BK enhanced much more bioavailable organic matters release, little affected on hydrolysis, acidification, but seriously inhibited methanogenesis. Microbial community investigation revealed that BK exposure importantly enhanced the relative abundances of hydrolytic-acidifying bacteria and also improved the metabolic pathways and functional genes for sludge lysis. This work further supplement the information for environmental toxicity of emerging pollutants.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; School of Life Science, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Lei Zhu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Xianglong Yang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Qiushuo Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China
| | - Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China; School of Life Science, Hebei University, Baoding, 071002, PR China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
10
|
Qin K, Shi X, Chen Y, Feng Q, Qin F, Guo R, Liu Q. Enhanced bio-affinity of magnetic QD-P(St-GMA)@Fe 3O 4 micro-particles via surface-quaternized modification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64168-64178. [PMID: 37060411 DOI: 10.1007/s11356-023-26907-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
In this work, a kind of bio-carrier quaternized-polystyrene-polyglycidyl methacrylate@Fe3O4 (QD-P(St-GMA)@Fe3O4, QD-PSGF) micro-particles was successfully prepared by modifying PSGF micro-particles through a hydrothermal method. The quaternary ammonium group and surface structure of QD-PSGF were confirmed through several characterization methods. We directly verified the efficacy of the quaternary ammonium group in promoting microbial activity due to QD-PSGF being synthesized by a hydrothermal method without changing the surface topography and pore. The bio-affinity of QD-PSGF microspheres was evaluated by bacterial adhesion and anaerobic digestion experiments. The results showed that a little quaternary ammonium group can increase bacterial adhesion by about 2-3 times and methane production by 40%. The novel developed QD-PSGF micro-particles can be a promising material as a biofilm carrier for bio-application.
Collapse
Affiliation(s)
- Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Ying Chen
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Fan Qin
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
- Shandong Energy Institute, Qingdao, 266101, People's Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, People's Republic of China
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
11
|
Yang W, Cai C, Wang R, Dai X. Insights into the impact of quaternary ammonium disinfectant on sewage sludge anaerobic digestion: Dose-response, performance variation, and potential mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130341. [PMID: 36403443 DOI: 10.1016/j.jhazmat.2022.130341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Wide commercial applications of antimicrobial quaternary ammonium compounds (QACs) inevitably lead to the release into wastewater and enrichment in sewage sludge. This study evaluated the impacts of levels and structures of QACs on sewage sludge properties, microbial community, and methane production during anaerobic digestion. Methane production was stimulated or not affected at low QACs concentrations, but significantly inhibited at high QACs concentrations. Compared with benzyl and alkyltrimethyl QACs, dialkyl QACs showed least toxicity on digestion performance. Meanwhile, microbial community analysis indicated that shifts in bacterial communities mainly depended on QACs doses, but the archaeal communities were affected by both QACs doses and types. The dominant methanogenic pathway shifted from acetotrophic/methylotrophic methanogens to mixotrophic methanogens by low levels of benzyl and alkyltrimethyl QACs but not dialkyl QACs, and further to hydrogenotrophic methanogens at high QACs concentration. Mechanism exploration revealed that the presence of QACs promoted sludge solubilization by the integrated effects of cell lysis, electric neutralization, and hydrophobicity improvement, but inhibited methanogenesis due to the accumulation of volatile fatty acids and susceptibility of methanogens to QACs. These findings provided a reference for potential impacts of different QACs on sludge biological treatment, which had implications for the use and selection of QACs disinfectants.
Collapse
Affiliation(s)
- Wan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Rui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|