1
|
Casella C, Cornelli U, Ballaz S, Zanoni G, Merlo G, Ramos-Guerrero L. Plastic Smell: A Review of the Hidden Threat of Airborne Micro and Nanoplastics to Human Health and the Environment. TOXICS 2025; 13:387. [PMID: 40423466 DOI: 10.3390/toxics13050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
Airborne micro and nanoplastics (MPs/NPs) are a growing issue due to their possible health hazards. Since the current bibliography lacks a thorough evaluation, this review examines the sources, environmental dynamics, and health impacts of airborne MPs/NPs. Through atmospheric transport processes, these neo-pollutants spread around the world after being released, potentially settling in urban and remote areas. This review is the first to compare active and passive aerosol sampling methods, and microscopy, thermochemical, and spectroscopy analytical techniques, with a focus on their limitations in precisely quantifying micro-nanoscale plastic particles. It also draws attention to the potential toxicological effects of inhaled MPs/NPs, which can lead to oxidative stress, respiratory inflammation, and other negative health consequences. This review concludes by examining how airborne MPs/NPs may worsen their ecological impact by serving as carriers of hazardous chemicals and microbial pollutants. Despite growing awareness, there still are many unanswered questions, especially about the impact of long-term exposure and how atmospheric conditions affect the spread of MPs/NPs. The aim of this review was to bring attention to the issue of airborne MP/NP effects and to promote the development of advanced monitoring systems, a new multidisciplinary scientific field for the study of these novel pollutants, and global regulatory frameworks.
Collapse
Affiliation(s)
- Claudio Casella
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Santiago Ballaz
- Faculty of Health Sciences, Universidad del Espiritu Santo, Samborondón P.O. Box 09-01-952, Ecuador
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Gabriele Merlo
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Luis Ramos-Guerrero
- Grupo de Investigación en Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170513, Ecuador
| |
Collapse
|
2
|
Chang K, Yuan Y, Ma Y, Sun Q, Han Y. Characterization of atmospheric microplastics: A case study in Shenzhen City, a southern coastal area of China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:294. [PMID: 39951201 DOI: 10.1007/s10661-025-13741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/04/2025] [Indexed: 03/11/2025]
Abstract
The sources of atmospheric microplastics (AMPs) are complex and widely distributed. Microplastic pollution is particularly severe in urban areas. In this study, the abundance of AMPs was investigated at ten representative sampling points, with three points at an experimental building, and seven sample points at a residential district, an industrial area, a park, a farmland, a roadside, a river, and a seaside, respectively. The results show that the average abundance of AMPs is 2.22 n/m3, with a range from 1.31 to 4.5 n/m3. Human activities significantly contribute to the release of MPs. Furthermore, the abundance of AMPs decreases with increasing altitude. The predominant colors of AMPs are black and transparent, and particle sizes predominantly range from 50 to 200 µm. The micro-Fourier transform infrared spectrometer (µ-FTIR) analysis indicates that AMPs are primarily composed of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET), with fibrous shapes being predominant. In the principal component analysis (PCA), it was observed that AMPs exhibit a positive correlation with temperature and a negative correlation with humidity. This research may shed new light on future policy-making in microplastic control.
Collapse
Affiliation(s)
- Kuan Chang
- College of New Materials and New Energies, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China
- College of Materials Science and Engineering, Taiyuan University of Technology, Yuci District, 209 Daxue Street, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Yuman Yuan
- College of New Materials and New Energies, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China
| | - Yong Ma
- College of Materials Science and Engineering, Taiyuan University of Technology, Yuci District, 209 Daxue Street, Jinzhong, Shanxi, 030600, People's Republic of China.
| | - Qian Sun
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China.
| | - Yulai Han
- College of New Materials and New Energies, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China.
| |
Collapse
|
3
|
Liu Y, Nie Z, Meng Y, Liu G, Chen Y, Chai G. Influence of meteorological conditions on atmospheric microplastic transport and deposition. ENVIRONMENTAL RESEARCH 2025; 265:120460. [PMID: 39603587 DOI: 10.1016/j.envres.2024.120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Atmospheric microplastics are of great concern because of their potential impact on the environment and human health. Although several studies have shown the presence of large quantities of microplastics in the air, questions about the transport and deposition of microplastics in the atmosphere remain unanswered. Based on these shortcomings, this review provides a comprehensive overview of the influence of meteorological conditions on atmospheric microplastic fate. Dry and wet deposition are the main removal mechanisms for atmospheric microplastic. Furthermore, by exploring how wind facilitates the long-range transport of microplastics between terrestrial and marine ecosystems, establishing a global microplastic cycle. Besides, this review also examines the effects of other meteorological conditions on atmospheric microplastic transport. Characteristics of current atmospheric microplastic models are summarized, particularly with respect to the consideration of meteorological conditions. Finally, we propose future research directions and mitigation measures for atmospheric microplastic pollution, which are necessary for mitigating atmospheric microplastic pollution and protecting ecosystems and human health.
Collapse
Affiliation(s)
- Yichen Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Zhongquan Nie
- Chengdu Industry and Trade College, Chengdu, 611730, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China.
| | - Guodong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Yu Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Guangming Chai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
You T, Feng X, Xu H. The whole life journey and destination of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125165. [PMID: 39427952 DOI: 10.1016/j.envpol.2024.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Recent reports indicate that ubiquitous microplastics (MPs) in the environment can infiltrate the human body, posing significant health risks and garnering widespread attention. However, public understanding of the intricate processes through which microplastics are transferred to humans remains limited. Consequently, developing effective strategies to mitigate the escalating issue of MPs pollution and safeguard human health is still challenging. In this review, we elucidated the sources and dynamic migration pathways of MPs, examined its complex interactions with other pollutants, and identified primary routes of human exposure. Subsequently, the events and alterations of gut microbiota, gut microbiota metabolism, and intestinal barrier after MPs enter the gut of organisms are unclosed. Additionally, it highlighted the ease with which MPs translocate from the intestine to other organs along with their biological toxicities. Finally, we also emphasized the knowledge gaps in the current research field and proposes future research directions. This review aims to enhance public awareness regarding microplastic pollution and provide valuable references for forthcoming research endeavors as well as policy formulation related to this pressing issue.
Collapse
Affiliation(s)
- Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
5
|
Zheng H, Guo H, Fu H, Yao K. Microplastics in indoor and outdoor environments in China: Characteristic and human exposure risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117328. [PMID: 39536562 DOI: 10.1016/j.ecoenv.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Human exposure to microplastics (MPs) has led to global health concerns, but our knowledge of the characteristics and human exposure of airborne MPs is limited. Adults may have different exposure patterns and lifestyles from other age groups. Therefore, this study aims to determine the MPs exposure among adults at various locations and during different time periods. MPs were collected and detected through passive sampling and laser direct infrared (LDIR) imaging (Agilent 8700) at five locations including: dormitory, dining hall, office, library, and outdoor; the sampling lasted for 3 months. The highest concentration of indoor MPs was detected in the dining hall (193 ± 8 MPs/m2/day), whereas the lowest was detected in the library (113 ± 4 MPs/m2/day). Among all sampling points, the outdoor locations had the lowest MPs concentrations (92 ± 4 MPs/m2/day). The length of the MPs ranged from 10 μm-760 μm. Pellets (54.6 %), fibres (21.6 %), and fragments (23.8 %) were the shapes identified in this research. Polyamide (51.7 %) was the most prevalent polymer type at all sampling points. This article conducted respiratory exposure assessments of MPs for males and females of different ages (age ranges: 18-21; 21-30; 31-40; 41-60) in different environments and at different times. For both weekends and weekdays, dormitories contributed the most to MPs respiratory exposure. Males aged 31-40 years had the highest exposure with an average of 266 particles/day, whereas females aged 18-21 (157 particles/day) had the lowest exposure. Differences in respiratory rate according to age and gender may be the main reason for these results. These findings indicate that further research into the adult MPs inhalation exposure under indoor and outdoor conditions is crucial.
Collapse
Affiliation(s)
- Han Zheng
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Huibin Guo
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Haiyan Fu
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Kaixing Yao
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
6
|
Guo Z, Chen J, Yu H, Zhang Q, Duo B, Cui X. Characteristics, sources and potential ecological risk of atmospheric microplastics in Lhasa city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:347. [PMID: 39073604 PMCID: PMC11286671 DOI: 10.1007/s10653-024-02125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Atmospheric microplastics are important contributors to environmental contamination in aquatic and terrestrial systems and pose potential ecological risks. However, studies on atmospheric microplastics are still limited in urban regions of the Tibetan Plateau, a sentinel region for climate and environmental change under a warming climate. In this study, the occurrence and potential ecological risk of atmospheric microplastics were investigated in samples of suspended atmospheric microplastics collected in Lhasa city during the Tibetan New Year in February 2023. The results show that the average abundance of atmospheric microplastics in Lhasa was 7.15 ± 2.46 MPs m-3. The sizes of the detected microplastics ranged from 20.34 to 297.18 μm, approximately 87% of which were smaller than 100 μm. Fragmented microplastics (95.76%) were the dominant shape, followed by fibres (3.75%) and pellets (0.49%). The primary polymer chemical components identified were polyamide (68.73%) and polystyrene (16.61%). The analysis of meteorological data and the backwards trajectory model indicated the air mass in Lhasa mainly controlled by westwards, and the atmospheric microplastics mainly originated from long-distance atmospheric transport. The potential ecological risk index assessment revealed that the atmospheric microplastic pollution in Lhasa was relatively low. This study provides valuable insights and a scientific foundation for future research on the prevention and control of atmospheric microplastic pollution in Lhasa and other ecologically sensitive cities.
Collapse
Affiliation(s)
- Zimeng Guo
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Junyu Chen
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Hanyue Yu
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Qiangying Zhang
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Bu Duo
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| | - Xiaomei Cui
- Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
7
|
Xie Y, Irshad S, Jiang Y, Sun Y, Rui Y, Zhang P. Microplastic-mediated environmental behavior of metal contaminants: mechanism and implication. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43524-43539. [PMID: 38904875 DOI: 10.1007/s11356-024-34042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and metals are currently two of the most concerning environmental pollutants due to their persistent nature and potential threats to ecosystems and human health. This review examines the intricate interactions between MPs and metals in diverse environmental compartments, including aquatic, terrestrial, and atmospheric environments by focusing on the complex processes of adsorption and desorption and the mechanisms that govern these interactions. MPs act as carriers and concentrators of metals in aquatic and terrestrial environments, affecting the bioavailability and toxicity of these contaminants to aquatic and terrestrial organisms. This review highlights the existing challenges and constraints associated with current analytical methods, including microscopy, spectroscopy, and isotherm models in studying microplastic-heavy metal interactions. Moreover, we identified the knowledge gaps and future research directions that can enhance our understanding of the dynamic interplay between MPs and metals in various environmental settings.
Collapse
Affiliation(s)
- Yu Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Samina Irshad
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaqi Jiang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yi Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
8
|
Zhang L, García-Pérez P, Muñoz-Palazon B, Gonzalez-Martinez A, Lucini L, Rodriguez-Sanchez A. A metabolomics perspective on the effect of environmental micro and nanoplastics on living organisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172915. [PMID: 38719035 DOI: 10.1016/j.scitotenv.2024.172915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | | | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Campus Universitario de Fuentenueva s/n, 18071, University of Granada, Spain; Institute of Water Research, Calle Ramon y Cajal 4, 18001, University of Granada, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Campus Universitario de Fuentenueva s/n, 18071, University of Granada, Spain; Institute of Water Research, Calle Ramon y Cajal 4, 18001, University of Granada, Spain
| |
Collapse
|
9
|
Wayman C, González-Pleiter M, Fernández-Piñas F, Sorribes EL, Fernández-Valeriano R, López-Márquez I, González-González F, Rosal R. Accumulation of microplastics in predatory birds near a densely populated urban area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170604. [PMID: 38309362 DOI: 10.1016/j.scitotenv.2024.170604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The pollution due to plastic and other anthropogenic particles has steadily increased over the last few decades, presenting a significant threat to the environment and organisms, including avian species. This research aimed to investigate the occurrence of anthropogenic pollutants in the digestive and respiratory systems of four birds of prey: Common Buzzard (Buteo buteo), Black Kite (Milvus migrans), Eurasian Sparrowhawk (Accipiter nisus), and Northern Goshawk (Accipiter gentilis). The results revealed widespread contamination in all species with microplastics (MPs) and cellulosic anthropogenic fibers (AFs), with an average of 7.9 MPs and 9.2 AFs per specimen. Every digestive system contained at least one MP, while 65 % of specimens exhibited MPs in their respiratory systems. This is the work reporting a high incidence of MPs in the respiratory system of birds, clearly indicating inhalation as a pathway for exposure to plastic pollution. The content of MPs and AFs varied significantly when comparing specimens collected from central Madrid with those recovered from other parts of the region, including rural environments, suburban areas, or less populated cities. This result aligns with the assumption that anthropogenic particles disperse from urban centers to surrounding areas. Additionally, the dominant particle shape consisted of small-sized fibers (> 98 %), primarily composed of polyester, polyethylene, acrylic materials, and cellulose fibers exhibiting indicators of industrial treatment. These findings emphasize the necessity for further research on the impact of plastic and other anthropogenic material contamination in avian species, calling for effective strategies to mitigate plastic pollution.
Collapse
Affiliation(s)
- Chloe Wayman
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049, Madrid, Spain
| | - Elisa L Sorribes
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Rocío Fernández-Valeriano
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Irene López-Márquez
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain
| | - Fernando González-González
- Wildlife Hospital, Group of Rehabilitation of the Autochthonous Fauna and their Habitat (GREFA), Monte del Pilar, Majadahonda, 28220, Madrid, Spain; Departmental Section of Pharmacology and Toxicology, Faculty of Veterinary Science, Universidad Complutense de Madrid, 28020, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
10
|
Luo D, Chu X, Wu Y, Wang Z, Liao Z, Ji X, Ju J, Yang B, Chen Z, Dahlgren R, Zhang M, Shang X. Micro- and nano-plastics in the atmosphere: A review of occurrence, properties and human health risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133412. [PMID: 38218034 DOI: 10.1016/j.jhazmat.2023.133412] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
The ubiquitous occurrence of micro/nano plastics (MNPs) poses potential threats to ecosystem and human health that have attracted broad concerns in recent decades. Detection of MNPs in several remote regions has implicated atmospheric transport as an important pathway for global dissemination of MNPs and hence as a global health risk. In this review, the latest research progress on (1) sampling and detection; (2) origin and characteristics; and (3) transport and fate of atmospheric MNPs was summarized. Further, the current status of exposure risks and toxicological effects from inhaled atmospheric MNPs on human health is examined. Due to limitations in sampling and identification methodologies, the study of atmospheric nanoplastics is very limited today. The large spatial variation of atmospheric MNP concentrations reported worldwide makes it difficult to compare the overall indoor and outdoor exposure risks. Several in vitro, in vivo, and epidemiological studies demonstrate adverse effects of immune response, apoptosis and oxidative stress caused by MNP inhalation that may induce cardiovascular diseases and reproductive and developmental abnormalities. Given the emerging importance of atmospheric MNPs, the establishment of standardized sampling-pretreatment-detection protocols and comprehensive toxicological studies are critical to advance environmental and health risk assessments of atmospheric MNPs.
Collapse
Affiliation(s)
- Dehua Luo
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyun Chu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yue Wu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenfeng Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhonglu Liao
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjuan Ju
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Bin Yang
- Pingyang County Health Inspection Center, Wenzhou 325405, China.
| | - Zheng Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Xu Shang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
11
|
Kau D, Materić D, Holzinger R, Baumann-Stanzer K, Schauer G, Kasper-Giebl A. Fine micro- and nanoplastics concentrations in particulate matter samples from the high alpine site Sonnblick, Austria. CHEMOSPHERE 2024; 352:141410. [PMID: 38346510 DOI: 10.1016/j.chemosphere.2024.141410] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
We report atmospheric fine micro- and nanoplastics concentrations from particulate matter (PM) samples of two size fractions (PM10, fine micro- and nanoplastics, and PM1, nanoplastics), which were collected at the remote high alpine station Sonnblick Observatory, Austria. Active sampling was performed from June 2021 until April 2022. Analysis was done using TD-PTR-MS to detect 6 different plastic types. Polyethylene terephthalate (PET), polyethylene (PE) and polypropylene/polypropylene carbonate (PP/PPC) were found to be the dominating species. PET was detected in almost all samples, while the other plastic types occurred more episodically. Furthermore, polyvinyl chloride (PVC), polystyrene (PS) and tire wear particles were detected in single samples. Considering the three main plastic types, average plastics concentrations were 35 and 21 ng m-³ with maximum concentrations of 165 and 113 ng m-³ for PM10 and PM1, respectively. Average polymer concentrations were higher in the summer/fall period than in winter/spring. In summer/fall, PM10 plastics concentrations were higher by a factor of 2 compared to PM1, while concentrations of both size classes were comparable in the winter/spring period. This suggests that in the colder season plastic particles arriving at the Eastern Alpine crests are mainly present as nanoplastics. The contribution of micro- and nanoplastics to organic matter at the remote site was found to be comparable to data determined at an urban site. We found significant correlations between the PET concentration and tracers originating from anthropogenic activities such as elemental carbon, nitrate, ammonium, and sulphate as well as organic carbon and arabitol.
Collapse
Affiliation(s)
- Daniela Kau
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.
| | - Dušan Materić
- Institute of Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584CC, Utrecht, the Netherlands; Department for Analytical Chemistry, Helmoltz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Rupert Holzinger
- Institute of Marine and Atmospheric Research Utrecht, Utrecht University, Princetonplein 5, 3584CC, Utrecht, the Netherlands
| | | | | | - Anne Kasper-Giebl
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| |
Collapse
|
12
|
Martynova A, Genchi L, Laptenok SP, Cusack M, Stenchikov GL, Liberale C, Duarte CM. Atmospheric microfibrous deposition over the Eastern Red Sea coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167902. [PMID: 37858811 DOI: 10.1016/j.scitotenv.2023.167902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The transport of microplastics through the atmosphere has been acknowledged as a significant route for their dispersion across different environments. Microplastics of fibrous shape often prevail in environmental samples, although their composition identification might be challenging and lead to an overestimation of plastic microfibers (MFs). Conversely, MFs of natural origin are rarely reported in microplastics studies despite the lack of consensus on the risks they may pose to the environment. In this study, airborne MFs collected in a sparsely populated residential area on the shore of the Eastern Red Sea were analyzed to investigate their abundance and polymer composition and assess their potential transport and deposition rates. The length of observed fibers ranged from 183 μm to 11,877 μm, with 3 % of fibers being >5 mm. The average length of MFs (< 5 mm) was 1378 ± 934 μm. Plastic MFs comprised 10 % of all identified MFs, with polyester being the most common plastic polymer (81.25 %). The mean abundance of airborne MFs was 0.9 ± 0.8 × 10-2 MFs m-3. The estimated mean atmospheric microfibrous deposition was 70 MFs m-2 d-1, with a component of 8 plastic MFs m-2 d-1. Based on the HYSPLIT backward trajectory analysis, fibers of local origin (estimated to travel approximately 25 km before sampling) were deposited at the sampling location. Air masses of northwestern origin traveling along the coast of the Eastern Red Sea dominated, potentially reducing the abundance of airborne MFs.
Collapse
Affiliation(s)
- Anastasiia Martynova
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; KAUST Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Saudi Arabia; KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Saudi Arabia.
| | - Luca Genchi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sergey P Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Michael Cusack
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Georgiy L Stenchikov
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Saudi Arabia
| | - Carlo Liberale
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia
| | - Carlos M Duarte
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; KAUST Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Saudi Arabia; KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Saudi Arabia
| |
Collapse
|
13
|
Chen Q, Shi G, Revell LE, Zhang J, Zuo C, Wang D, Le Ru EC, Wu G, Mitrano DM. Long-range atmospheric transport of microplastics across the southern hemisphere. Nat Commun 2023; 14:7898. [PMID: 38036501 PMCID: PMC10689495 DOI: 10.1038/s41467-023-43695-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
Airborne microplastics (MPs) can undergo long range transport to remote regions. Yet there is a large knowledge gap regarding the occurrence and burden of MPs in the marine boundary layer, which hampers comprehensive modelling of their global atmospheric transport. In particular, the transport efficiency of MPs with different sizes and morphologies remains uncertain. Here we show a hemispheric-scale analysis of airborne MPs along a cruise path from the mid-Northern Hemisphere to Antarctica. We present the inaugural measurements of MPs concentrations over the Southern Ocean and interior Antarctica and find that MPs fibers are transported more efficiently than MPs fragments along the transect, with the transport dynamics of MPs generally similar to those of non-plastic particles. Morphology is found to be the dominant factor influencing the hemispheric transport of MPs to remote Antarctic regions. This study underlines the importance of long-range atmospheric transport in MPs cycling dynamics in the environment.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Guitao Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Jun Zhang
- NYU-ECNU Physics and Mathematics Research Institutes, New York University Shanghai, Shanghai, 200062, China
- Department of Physics, New York University, New York, NY, 10003, USA
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Danhe Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand
| | - Guangmei Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
14
|
Zhao C, Liang J, Zhu M, Zheng S, Zhao Y, Sun X. Occurrence, characteristics, and factors influencing the atmospheric microplastics around Jiaozhou Bay, the Yellow Sea. MARINE POLLUTION BULLETIN 2023; 196:115568. [PMID: 37783164 DOI: 10.1016/j.marpolbul.2023.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Atmospheric microplastics are attracting increasing attention as an emerging pollutant. However, research on its characteristics and influencing factors is insufficient. This study examines the characteristics and spatiotemporal distribution of atmospheric microplastics around Jiaozhou Bay, the Yellow Sea. The results showed that the dominant shapes of microplastic were fragments (61.9 %) and fibers (25.6 %), and the main types were polyethylene terephthalate (23.8 %), polyethylene (31.6 %) and cellulose (rayon, 34.9 %). The deposition rate of microplastic varied from 8.395 to 80.114 items·m-2·d-1, with a mean of 46.708 ± 21.316 items·m-2·d-1. The deposition rate was higher in the dry season than in the rainy season, indicating the influence of weather condition. The annual mass of atmospheric microplastics entering the bay was estimated to be 7.612 ± 3.474 tons. For the first time, this study reveals that atmospheric microplastics in Jiaozhou Bay change spatiotemporally due to monsoons, which pose a potential threat to marine ecosystems.
Collapse
Affiliation(s)
- Chenhao Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China
| | - Mingliang Zhu
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China
| | - Yongfang Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China; Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Catarino AI, León MC, Li Y, Lambert S, Vercauteren M, Asselman J, Janssen CR, Everaert G, De Rijcke M. Micro- and nanoplastics transfer from seawater to the atmosphere through aerosolization under controlled laboratory conditions. MARINE POLLUTION BULLETIN 2023; 192:115015. [PMID: 37172341 DOI: 10.1016/j.marpolbul.2023.115015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 05/14/2023]
Abstract
Sea spray has been suggested to enable the transfer of micro- and nanoplastics (MNPs) from the ocean to the atmosphere, but only a few studies support the role of sea spray aerosols (SSAs) as a source of airborne particles. We demonstrated that MNPs are aerosolized during wave action, via SSAs, under controlled laboratory conditions. We used a mini-Marine-Aerosol-Reference-Tank (miniMART), a device that mimics naturally occurring physical mechanisms producing SSAs, and assessed the aerosolization of fluorescent polystyrene beads (0.5-10 μm), in artificial seawater. The SSAs contained up to 18,809 particles/mL of aerosols for 0.5 μm beads, with an enrichment factor of 19-fold, and 1977 particles/mL of aerosols for 10 μm beads with a 2-fold enrichment factor. Our study demonstrates that the use of the miniMART is essential to assess MNPs aerosolization in a standardized way, supporting the hypothesis which states that MNPs in the surface of the ocean may be transferred to the atmosphere.
Collapse
Affiliation(s)
- Ana Isabel Catarino
- Flanders Marine Institute (VLIZ), Research Division, Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400 Oostende, Belgium.
| | - Maria Camila León
- Flanders Marine Institute (VLIZ), Research Division, Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400 Oostende, Belgium; Free University of Brussels (VUB), Faculty of Sciences and Bioengineering Sciences, Pleinlaan 2 - room F806, 1050 Brussels, Belgium; Ghent University, Faculty of Sciences, Krijgslaan 281,9000 Gent, Belgium; Antwerp University, Faculty of Sciences, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Yunmeng Li
- Flanders Marine Institute (VLIZ), Research Division, Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400 Oostende, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Silke Lambert
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Maaike Vercauteren
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Colin R Janssen
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Gert Everaert
- Flanders Marine Institute (VLIZ), Research Division, Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400 Oostende, Belgium
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), Research Division, Ocean and Human Health, InnovOcean Campus, Jacobsenstraat 1, 8400 Oostende, Belgium
| |
Collapse
|
16
|
Cardoso-Mohedano JG, Ruiz-Fernández AC, Sanchez-Cabeza JA, Camacho-Torres SM, Ontiveros-Cuadras JF. Microplastics transport in a low-inflow estuary at the entrance of the Gulf of California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161825. [PMID: 36716892 DOI: 10.1016/j.scitotenv.2023.161825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are recognized as a global emergent pollution impact, which can affect all food chains. Estimating MPs transport pathways in coastal ecosystems is needed to assess their likely effects. Here, we studied MPs accumulation and transport pathways in the Estero de Urias lagoon system (low-inflow estuary) using field data and a 3D particle model. Field results showed that the MPs present similar abundances throughout the study area during the dry and rainy seasons. Model simulations indicated that i) morphology and tidal currents caused the MPs discharged in the lagoon to remain inside, and ii) wind-induced currents caused the MPs in the coastal area to be transported to the southwest. These transport processes may be responsible for homogenizing MPs concentrations through the studied area. In addition, model simulations suggested that EUL-dense waters can export MPs from the coastal area to the sea bottom.
Collapse
Affiliation(s)
- Jose Gilberto Cardoso-Mohedano
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km. 9.5, 24157 Ciudad del Carmen, Campeche, Mexico.
| | - Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico
| | - Joan-Albert Sanchez-Cabeza
- Universidad Nacional Autónoma de México, Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico
| | | | - Jorge Feliciano Ontiveros-Cuadras
- Universidad Nacional Autónoma de México, Unidad Académica Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y Limnología, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|