1
|
Cozzolino L, Nicastro KR, Detree C, Gribouval L, Seuront L, Lima FP, McQuaid CD, Zardi GI. Intraspecific variations in oyster (Magallana gigas) ploidy does not affect physiological responses to microplastic pollution. CHEMOSPHERE 2024; 364:143206. [PMID: 39209043 DOI: 10.1016/j.chemosphere.2024.143206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Recent advances in genetic manipulation such as triploid breeding and artificial selection, have rapidly emerged as valuable hatchery methodologies for enhancing seafood stocks. The Pacific oyster Magallana gigas is a leading aquaculture species worldwide and key ecosystem engineer that has received particular attention in this field of science. In light of the growing recognition of the ecological effects of intraspecific variation, oyster polyploids provide a valuable opportunity to assess whether intraspecific diversity affects physiological responses to environmental stressors. While the responses of diploid and triploid oysters to climate change have been extensively investigated, research on their sensitivity to environmental pollution remains scarce. Here, we assess whether genotypic (i.e., ploidy) variation within Magallana gigas affects physiological responses to microplastic pollution. We show that diploid and triploid M. gigas have similar clearance rates and ingest similar amounts of microplastics under laboratory-controlled condition. In addition, they exhibited similar heart rates after prolonged exposure to microplastic leachates. Our findings suggest that intraspecific variations within M. gigas ploidy does not affect oyster responses to microplastic pollution. However, regardless of ploidy, our work highlights significant adverse effects of microplastic leachates on the heart rate of M. gigas and provides evidence of microplastic ingestion in the laboratory.
Collapse
Affiliation(s)
- Lorenzo Cozzolino
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| | - Katy R Nicastro
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Camille Detree
- Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France; Office Française de la Biodiversité, 16, quai de la Douane, 29229, Brest, France
| | - Laura Gribouval
- SATMAR, La Saline, 47 route du Val-de-Saire, 50760, Gatteville-Phare, France
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Fernando P Lima
- CIBIO, Centro de Investigaccaao em Biodiversidade e Recursos Geneticos, InBIO Laboratório Associado, Campus de Vairaao, Rua Padre Armando Quintas, no 7, 4485-661, Vairaao, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairaao, Rua Padre Armando Quintas, no 7, 4485-661, Vairaao, Portugal
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France
| |
Collapse
|
2
|
Lima LVS, do Nascimento RF, de Barros-Barreto MBB, Silva AA, Furtado CRG, Figueiredo GM. Microplastics associated with stranded macroalgae on an impacted estuarine beach, Rio de Janeiro, Brazil. MARINE POLLUTION BULLETIN 2024; 206:116772. [PMID: 39068709 DOI: 10.1016/j.marpolbul.2024.116772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Microplastics (MPs) are contaminants widely distributed in marine ecosystems. Only few studies approached MP interactions with marine plants, which are considered potential traps for MPs. Here, we determined MPs' densities and types associated with stranded macroalgae on a eutrophic beach in Guanabara Bay. Our results showed that red algae exhibited higher MP densities (1.48 MPs g-1), possibly due to their more branched thalli, than green algae (0.27 MPs g-1). The predominant MP types were blue and white fragments <3 mm in size and polymers were classified as polyethylene and polyvinyl chloride in fragments, and polypropylene in fibers. The higher densities of MPs in algae seemed to be influenced by the inner bay waters. The densities of MPs associated with algae from Guanabara Bay surpassed those reported in other studies. High MPs densities increase the chances that organisms associated with algae entangle or ingest MPs, impacting their health and survival.
Collapse
Affiliation(s)
- Lucas Vinícius Sousa Lima
- Postgraduation Program in Marine Biology and coastal Environments - Federal Fluminense University, Niteroi, Brazil
| | | | | | - Arianne Aparecida Silva
- Department of Chemical Processes, Institute of Chemistry, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gisela Mandali Figueiredo
- Postgraduation Program in Marine Biology and coastal Environments - Federal Fluminense University, Niteroi, Brazil; Department of Marine Biology, Institute of Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Rimmer C, Fisher J, Turner A. Biomonitoring of microplastics, anthropogenic microfibres and glass retroreflective beads by marine macroalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123801. [PMID: 38527581 DOI: 10.1016/j.envpol.2024.123801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Microplastics and other microscopic debris are a concern in the coastal environment but measurements in the water column and sediment are often problematic and rely on non-standardised and highly variable methodologies. To this end, we explore the potential of different species of temperate-cold marine macroalgae as passive biomonitors of anthropogenic microparticles at three contrasting locations in southwest England. Specifically, fronds from samples of fucoids and Ulva lactuca (n = 9 in total, and three from each location) have been sectioned and analysed directly under a microscope and anthropogenic microparticles counted and subsequently characterised for chemical composition. Microparticles were heterogeneously distributed throughout sections from the same sample. However, on a dry weight basis, combined microparticle concentrations for each sample ranged from about 7.5 g-1 to 110 g-1, and from about 0.2 cm-2 to 0.9 cm-2, and for a given species were higher in samples from a semi-enclosed harbour and urban beach than in samples from a protected beach facing the open sea. These values compare with published concentrations of microplastics and microfibres reported for the regional water column on the order of 0.1 m-3. Most particles were cellulosic (e.g., rayon) and petroleum-based (mainly polyester and polyethylene terephthalate) fibres but plastic fragments were also present on most samples. Glass retroreflective beads derived from road markings were also present at up to 18 g-1 on fucoids from the urban beach because of its proximity to a stormwater effluent. Most microparticles were adhered to the smooth parts of the macroalgal surface but some displayed wrapping around edges and creases or entrapment by appendages. The practical and environmental implications of macroalgae passively capturing significant quantities of anthropogenic microparticles are discussed.
Collapse
Affiliation(s)
- Cerys Rimmer
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Jodie Fisher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
4
|
McIlwraith HK, Lindeque PK, Miliou A, Tolhurst TJ, Cole M. Microplastic shape influences fate in vegetated wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123492. [PMID: 38311156 DOI: 10.1016/j.envpol.2024.123492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Coastal areas are prone to plastic accumulation due to their proximity to land based sources. Coastal vegetated habitats (e.g., seagrasses, saltmarshes, mangroves) provide a myriad of ecosystem functions, such as erosion protection, habitat refuge, and carbon storage. The biological and physical factors that underlie these functions may provide an additional benefit: trapping of marine microplastics. While microplastics occurrence in coastal vegetated sediments is well documented, there is conflicting evidence on whether the presence of vegetation enhances microplastics trapping relative to bare sites and the factors that influence microplastic trapping remain understudied. We investigated how vegetation structure and microplastic type influences trapping in a simulated coastal wetland. Through a flume experiment, we measured the efficiency of microplastic trapping in the presence of branched and grassy vegetation and tested an array of microplastics that differ in shape, size, and polymer. We observed that the presence of vegetation did not affect the number of microplastics trapped but did affect location of deposition. Microplastic shape, rather than polymer, was the dominant factor in determining whether microplastics were retained in the sediment or adhered to the vegetation canopy. Across the canopy, microfibre concentrations decreased from the leading edge to the interior which suggests that even on a small-scale, vegetation has a filtering effect. The outcome of this study enriches our understanding of coastal vegetation as a microplastics sink and that differences among microplastics informs where they are most likely to accumulate within a biogenic canopy.
Collapse
Affiliation(s)
- Hayley K McIlwraith
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK; University of East Anglia, School of Environmental Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Penelope K Lindeque
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Anastasia Miliou
- Archipelagos Institute of Marine Conservation, Pythagorio, Samos, 83103, Greece
| | - Trevor J Tolhurst
- University of East Anglia, School of Environmental Sciences, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK.
| |
Collapse
|
5
|
Mendrik F, Houseago RC, Hackney CR, Parsons DR. Microplastic trapping efficiency and hydrodynamics in model coral reefs: A physical experimental investigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123094. [PMID: 38072017 DOI: 10.1016/j.envpol.2023.123094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
Coastal ecosystems, such as coral reefs, are vulnerable to microplastic pollution input from proximal riverine and shoreline sources. However, deposition, retention, and transport processes are largely unevaluated, especially in relation to hydrodynamics. For the first time, we experimentally investigate the retention of biofilmed microplastic by branching 3D printed corals (staghorn coral Acropora genus) under various unidirectional flows (U = {0.15, 0.20, 0.25, 0.30} ms-1) and canopy densities (15 and 48 corals m-2). These variables are found to drive trapping efficiency, with 79-98% of microplastics retained in coral canopies across the experimental duration at high flow velocities (U = 0.25-0.30 ms-1), compared to 10-13% for the bare bed, with denser canopies retaining only 15% more microplastics than the sparse canopy at highest flow conditions (U = 0.30 ms-1). Three fundamental trapping mechanisms were identified: (a) particle interception, (b) settlement on branches or within coral, and (c) accumulation in the downstream wake region of the coral. Corresponding hydrodynamics reveal that microplastic retention and spatial distribution is modulated by the energy-dissipative effects of corals due to flow-structure interactions reducing in-canopy velocities and generating localised turbulence. The wider ecological implications for coral systems are discussed in light of the findings, particularly in terms of concentrations and locations of plastic accumulation.
Collapse
Affiliation(s)
- Freija Mendrik
- Energy and Environment Institute, University of Hull, UK; International Marine Litter Research Unit, University of Plymouth, UK; School of Biological and Marine Sciences, University of Plymouth, UK.
| | | | | | | |
Collapse
|
6
|
Cozzolino L, Nicastro KR, Hubbard PC, Seuront L, McQuaid CD, Zardi GI. Intraspecific genetic lineages of a marine mussel show behavioural divergence when exposed to microplastic leachates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122779. [PMID: 37863252 DOI: 10.1016/j.envpol.2023.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Worldwide, microplastic pollution has numerous negative implications for marine biota, exacerbating the effects of other forms of global anthropogenic disturbance. Mounting evidence shows that microplastics (MPs) not only cause physical damage through their ingestion, but also act as vectors for hazardous compounds by leaching absorbed and adsorbed chemicals. Research on the effects of plastic pollution has, however, largely assumed that species respond uniformly, while ignoring intraspecific diversity (i.e., variation within a single species). We investigated the effects of plastic leachates derived from factory-fresh (virgin) and beached microplastics on the behavioural responses of two genetic lineages of the Mediterranean mussel Mytilus galloprovincialis. Through laboratory behavioural experiments, we found that during exposure to leachates from beached microplastics (beached MPLs), Atlantic specimens moved significantly less than Mediterranean individuals in terms of both (i) proportion of individuals responding through movement and (ii) net and gross distances crawled. In contrast, no significant intraspecific differences were observed in the behaviour of either adults or recruits when exposed to MPLs from virgin microplastics (virgin MPLs). Additionally, the reception of cues from three amino acids (L-cysteine, proline and L-leucine) at increasing concentrations (10-5 M to 10-3 M in charcoal-filtered seawater) was tested by electrophysiological analysis using mussels exposed to beached MPLs or control seawater. We found significant intraspecific differences in response to 10-3 M L-cysteine (regardless of treatment) and 10-4 M L-cysteine (in mussels exposed to beached MPLs) and to 10-3 M proline (in mussels exposed to beached MPLs) and 10-5 M L-leucine. Our study suggests that intraspecific variation in a marine mussel may prompt different responses to plastic pollution, potentially triggered by local adaptation and physiological variability between lineages. Our work highlights the importance of assessing the effects of intraspecific variation, especially in environmental sentinel species as this level of diversity could modulate responses to plastic pollution.
Collapse
Affiliation(s)
- Lorenzo Cozzolino
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| | - Katy R Nicastro
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Peter C Hubbard
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-59000, Lille, France; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108- 8477, Japan
| | - Christopher D McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Gerardo I Zardi
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000, Caen, France
| |
Collapse
|
7
|
Purayil NC, Thomas B, Tom RT. Microplastics - A major contaminant in marine macro algal population: Review. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106281. [PMID: 38016300 DOI: 10.1016/j.marenvres.2023.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/29/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Microplastics (MPs) are a significant concern in this modern environment, and the marine environment is a sink for them now. Researchers have taken an interest in marine microplastic studies recently, which has opened the door to research in macroalgae and microalgae. Macroalgae are the primary producers in maritime ecosystems and are economically significant. This review aimed to identify the microplastic interactions with marine macroalgae and the impacts of microplastics on macroalgae based on existing literature while also recognizing knowledge gaps. MPs were mostly fibers and polymers with notable production and application levels; their abundance differed among species. More MPs were found in filamentous species than in other types. The results of this study indicated that, in maritime environments, macroalgae contribute to MP biomagnification and bioaccumulation. Adequate studies are needed to fill the research gaps in this area of MPs in macroalgae and their effects.
Collapse
Affiliation(s)
- Navya Chettiam Purayil
- Centre for PG Studies and Research in Botany, St. Joseph's College (Autonomous), Devagiri, Kozhikode, 673008, Kerala, India
| | - Binu Thomas
- Centre for PG Studies and Research in Botany, St. Joseph's College (Autonomous), Devagiri, Kozhikode, 673008, Kerala, India.
| | - Renjis T Tom
- Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, Kozhikode, 673008, Kerala, India
| |
Collapse
|
8
|
Cozzolino L, Nicastro KR, Lefebvre S, Corona L, Froneman PW, McQuaid C, Zardi GI. The effect of interspecific and intraspecific diversity on microplastic ingestion in two co-occurring mussel species in South Africa. MARINE POLLUTION BULLETIN 2023; 196:115649. [PMID: 37864858 DOI: 10.1016/j.marpolbul.2023.115649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/23/2023]
Abstract
Interspecific and intraspecific diversity are essential components of biodiversity with far-reaching implications for ecosystem function and service provision. Importantly, genotypic and phenotypic variation within a species can affect responses to anthropogenic pressures more than interspecific diversity. We investigated the effects of interspecific and intraspecific diversity on microplastic ingestion by two coexisting mussel species in South Africa, Mytilus galloprovincialis and Perna perna, the latter occurring as two genetic lineages. We found significantly higher microplastic abundance in M. galloprovincialis (0.54 ± 0.56 MP items g-1WW) than P. perna (0.16 ± 0.21 MP items g-1WW), but no difference between P. perna lineages. Microbeads were the predominant microplastic (76 % in P. perna, 99 % in M. galloprovincialis) and polyethylene the prevalent polymer. Interspecific differences in microplastic abundance varied across locations, suggesting diverse sources of contamination. We suggest that microplastic ingestion can be species-specific even in organisms that coexist and play similar functional roles within ecosystems.
Collapse
Affiliation(s)
- Lorenzo Cozzolino
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Katy R Nicastro
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, station marine de Wimereux, F-59000 Lille, France
| | - Sebastien Lefebvre
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, station marine de Wimereux, F-59000 Lille, France
| | - Luana Corona
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | | | - Christopher McQuaid
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Gerardo I Zardi
- CCMAR-Centro de Ciências do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal; Normandie Université, UNICAEN, Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques, UMR 8067 BOREA (CNRS, MNHN, UPMC, UCBN, IRD-207), CS 14032, 14000 Caen, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|