1
|
Chen Z, Zhao C, Luo X, Liu G, Hou S. Hydrogel immobilized bacteria@metal-organic-frameworks composite augmented bisphenol A removal from activated sludge and its regulation behavior on sludge community. BIORESOURCE TECHNOLOGY 2025; 426:132372. [PMID: 40064452 DOI: 10.1016/j.biortech.2025.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Improving degradation efficiency of activated sludge towards bisphenol A (BPA) is related to water safety. A hydrogel immobilized bacteria@metal-organic-frameworks (im-SQ-2@MOFs) was synthesized previously, which was a composite formed by metal organic frameworks adhering to BPA degrading bacteria. Accordingly, this study added im-SQ-2@MOFs as enhancer to augment the BPA degradation ability of activated sludge. Results indicated that after the addition of im-SQ-2@MOFs, the augmented activated sludge system maintained 90 % BPA degradation rate for 10 mg/L BPA. Meanwhile, the system also presented 80-97 % degradation effect for other phenolic pollutants. Augmentation mechanism was revealed through multi-omics analysis. Firstly, im-SQ-2@MOFs enriched the degradation functional microorganisms in activated sludge, and microbial communication was further prompted. Besides, organic compounds degrading enzymes were upregulated to intensify BPA hydrolysis. Furthermore, electron transfer during BPA degradation was accelerated. Results provide new perspective on the development of bio-augmented materials to improve the efficiency of sewage treatment plants. TAKE HOME MESSAGE.
Collapse
Affiliation(s)
| | | | - Xuemei Luo
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan 610015, China.
| | - Guotao Liu
- Chengdu Medical College, Chengdu 610500, China.
| | - Siyu Hou
- Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
2
|
Xu W, Wu L, Geng M, Zhou J, Bai S, Nguyen DV, Ma R, Wu D, Qian J. Biochar@MIL-88A(Fe) accelerates direct interspecies electron transfer and hydrogen transfer in waste activated sludge anaerobic digestion: Exploring electron transfer and biomolecular mechanisms. ENVIRONMENTAL RESEARCH 2025; 268:120810. [PMID: 39793869 DOI: 10.1016/j.envres.2025.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Adding additives exogenously is an effective strategy to enhance methanogenic activity and improve AD stability. Corn straw-based biochar@MIL-88A(Fe) (BM) was synthesized herewith and used as an exogenous additive to boost methane (CH4) production. After adding BM at 250 mg/g WAS VS, the accumulative CH4 production and maximum CH4 yield increased by 1.2 and 1.9 times, respectively, with CH₄ comprising 88% of the biogas. BM accelerated electron transfer through its unsaturated sites and surface functional groups, while also enhancing metabolic functions for facilitating enzymatic activities and converting organic substrates. The abundance of syntrophic bacteria and methanogen were higher after BM addition. BM-mediated DIET and IHT pathways effectively oxidized propionate and butyrate, promoting methane generation. Higher expression of key genes involved in methane production correlated with shifts in microbial structure and increased CH4 yield after BM dosage. The invention of BM may provide more solutions for addressing low energy recovery during AD.
Collapse
Affiliation(s)
- Weihang Xu
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Mengqi Geng
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Junmei Zhou
- Sichuan Rongshi Environmental Protection Technology Co., Ltd, Chengdu, China
| | - Sai Bai
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Duc Viet Nguyen
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Rui Ma
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China
| | - Di Wu
- Center for Environmental Energy Research, Ghent University Global Campus, Incheon, South Korea; Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, China.
| |
Collapse
|
3
|
Liu H, Xu Y, Li L, Li X, Dai X. Enhancing proton-coupled electron transfer drives efficient methanogenesis in anaerobic digestion. WATER RESEARCH 2024; 266:122331. [PMID: 39208569 DOI: 10.1016/j.watres.2024.122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The enhancement of electron or proton transfer between syntrophic microbes has been widely recognised as a means for improving methane generation. However, the uncoupled supplementation of electrons and protons in multiphase anaerobic environment hinders the balanced uptake of electrons and protons in the cytoplasm of methanogens, limiting methanogenesis efficiency. Herein, the cooperative effect of a proton-conductive material (PM) and an electron-conductive material (EM) in enhancing proton-coupled electron transfer (PCET) and driving efficient methanogenesis in anaerobic digestion was investigated. The cooperation of the PM and EM significantly increased methane production and the maximum methane generation rate by 78.9 % and 103.5 %, respectively, indicating enhanced methanogenesis efficiency. Analysis of the physicochemical properties, biochemical components, and microbial dynamics revealed that the cooperation of the PM and EM improved the metabolism of syntrophic microbes, which was critically dependent on electron and proton transfer. This enhancement was primarily due to the improvement in PCET, as mainly supported by hydrogen/deuterium kinetic isotope effect measurements, multi-omics integration analyses and reaction thermodynamics and kinetics analyses. Our findings suggest that the PCET enhancement stimulated efficient membrane-bound enzymatic reactions related to electron-driven proton translocation and facilitated electron and proton supply for CO2 reduction to realise highly efficient methane generation. These findings are expected to provide a new insight into effective electron and proton coupling transfer for methanogenic metabolism in multiphase anaerobic environments.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Liu H, Xu Y, Dai X. Electron-transfer-driven spatial optimisation of anaerobic consortia for efficient methanogenesis: Neglected inductive effect of conductive materials. BIORESOURCE TECHNOLOGY 2024; 403:130856. [PMID: 38763204 DOI: 10.1016/j.biortech.2024.130856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The inductive effect of conductive materials (CMs) on enhancing methanogenesis metabolism has been overlooked. Herein, we highlight role of CMs in inducing the spatial optimisation of methanogenic consortia by altering the Lewis acid-base (AB) interactions within microbial aggregates. In the presence of CMs and after their removal, the methane production and methane proportion in biogas significantly increase, with no significant difference between the two situations. Analyses of interactions between CMs and extracellular polymer substances (EPSs) with and without D2O reveal that CMs promote release and transfer potential of electron in EPSs, which induce and enhance the role of water molecules being primarily as proton acceptors in the hydrogen bonding between EPSs and water, thereby changing the electron-donor- and electron-acceptor-based AB interactions. Investigations of succession dynamics of microbial communities, co-occurrence networks, and metagenomics further indicate that electron transfer drives the microbial spatial optimisation for efficient methanogenesis through intensive interspecies interactions.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Chen L, Zhang X, Zhu J, Fan H, Qin Z, Li J, Xie H, Zhu H. Peroxydisulfate activation and versatility of defective Fe 3O 4@MOF-808 for enhanced carbon and phosphorus recovery from sludge anaerobic fermentation. WATER RESEARCH 2024; 254:121401. [PMID: 38447378 DOI: 10.1016/j.watres.2024.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Although being viewed as a promising technology for reclamation of carbon and phosphorus from excess sludge, anaerobic fermentation (AF) grapples with issues such as a low yield of volatile fatty acids (VFAs) and high phosphorus recovery costs. In this study, we synthesized Fe3O4@MOF-808 (FeM) with abundant defects and employed it to simultaneously enhance VFAs and phosphorus recovery during sludge anaerobic fermentation. Through pre-oxidization of sludge catalyzed by FeM-induced peroxydisulfate, the soluble organic matter increased by 2.54 times, thus providing ample substrate for VFAs production. Subsequent AF revealed a remarkable 732.73 % increase in VFAs and a 1592.95 % increase in phosphate. Factors contributing to the high VFAs yield include the non-biological catalysis of unsaturated Zr active sites in defective FeM, enhancing protein hydrolysis, and the inhibition of methanogenesis due to electron competition arising from the transformation between Fe(III) and Fe(II) under Zr influence. Remarkably, FeM exhibited an adsorption capacity of up to 92.64 % for dissolved phosphate through ligand exchange and electrostatic attractions. Furthermore, FeM demonstrated magnetic separation capability from the fermentation broth, coupled with excellent stability and reusability in both catalysis and adsorption processes.
Collapse
Affiliation(s)
- Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Xiangyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Jianming Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Helin Fan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zimu Qin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Jun Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province 310003, PR China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Li J, Lin G, Zeng B, Wang Z, Wang S, Fu L, Hu T, Zhang L. Synthetic of functionalized magnetic titanium-based metal-organic frameworks to efficiently remove Hg(Ⅱ) from wastewater. J Colloid Interface Sci 2024; 653:528-539. [PMID: 37729760 DOI: 10.1016/j.jcis.2023.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The rapid development of process technology has led to rapid daily industrial production, which also produced a large amount of waste liquid. At the same time, the existing treatment technology cannot keep up with the demand, resulting in the malicious destruction of the environment by wastewater, especially mercury-containing wastewater was very harmful. Effective means of removing mercury ions need to be found. With magnetic ferric oxide as the core and titanium-based metal-organic frameworks as the shell, a new type of magnetic adsorbent (BTA-MIL-125(Ti)@Fe3O4) was synthesized. Materials were tested by multiple characterization methods and multiple sets of experiments. At optimal pH 6, the removal rate in 100 ppm Hg(Ⅱ) was as high as 95.8%. The theoretical adsorption capacity was 615 mg/L. Isothermal experiments, kinetic experiments and thermodynamic experiments have respectively verified that the material was a kind of adsorption material with self-emission heat based on chemical action and synergistic adsorption with Hill model. By simulating the immunity of a variety of ions (Cu, Zn, Mg, Ni, Cd), the material itself also exhibited a very high affinity for Hg(Ⅱ). The results of five high-cycle stable adsorption proved the repeatable stability of the material itself. Various characterization methods have also shown that nitrogen and sulfur-containing groups chelated with Hg(Ⅱ). All of the above was enough to show that the BTA-MIL-125(Ti)@Fe3O4 was a magnetic adsorption material with excellent performance and great prospects.
Collapse
Affiliation(s)
- Jing Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Guo Lin
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Biao Zeng
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Zeying Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Likang Fu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Tu Hu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Libo Zhang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| |
Collapse
|
7
|
Zhang W, Huang W, Tan J, Huang D, Ma J, Wu B. Modeling, optimization and understanding of adsorption process for pollutant removal via machine learning: Recent progress and future perspectives. CHEMOSPHERE 2023; 311:137044. [PMID: 36330979 DOI: 10.1016/j.chemosphere.2022.137044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
It is crucial to reduce the concentration of pollutants in water environment to below safe levels. Some cost-effective pollutant removal technologies have been developed, among which adsorption technology is considered as a promising solution. However, the batch experiments and adsorption isotherms widely employed at present are inefficient and time-consuming to some extent, which limits the development of adsorption technology. As a new research paradigm, machine learning (ML) is expected to innovate traditional adsorption models. This reviews summarized the general workflow of ML and commonly employed ML algorithms for pollutant adsorption. Then, the latest progress of ML for pollutant adsorption was reviewed from the perspective of all-round regulation of adsorption process, including adsorption efficiency, operating conditions and adsorption mechanism. General guidelines of ML for pollutant adsorption were presented. Finally, the existing problems and future perspectives of ML for pollutant adsorption were put forward. We highly expect that this review will promote the application of ML in pollutant adsorption and improve the interpretability of ML.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China.
| | - Jie Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Dawei Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Jun Ma
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215002, People's Republic of China.
| |
Collapse
|