1
|
Li X, Zhang C, Wang A, Zhang T, He Z, Zhao Y, Liu W, Zhou Q. Research progress on environmental behavior of arsenic in Qinghai-Tibet Plateau soil. J Environ Sci (China) 2025; 153:237-250. [PMID: 39855796 DOI: 10.1016/j.jes.2024.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 01/27/2025]
Abstract
The Qinghai-Tibet Plateau, with its high altitude and cold climate, is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic (As) levels in the soil, largely due to its rich mineral and geothermal resources. This review provides a comprehensive analysis of As content, focusing on its distribution, environmental migration, and transformation behavior across the plateau. The review further evaluates the distribution of As in different functional areas, revealing that geothermal fields (107.2 mg/kg), mining areas (53.8 mg/kg), and croplands (39.3 mg/kg) have the highest As concentrations, followed by river and lake sediments and adjacent areas (33.1 mg/kg). These elevated levels are primarily attributed to the presence of As-rich minerals, such as arsenopyrite and pyrite. Additionally, human activities, including mining and geothermal energy production, exacerbate the release of As into the environment. The review also highlights the role of local microorganisms, particularly those from the phyla Proteobacteria and Actinobacteria, which possess As metabolic genes that facilitate As translocation. Given the unique climatic conditions of the plateau, conventional methods for As control may not be fully effective. However, the review identifies promising remediation strategies that are environmentally adaptable, such as the use of local microorganisms, specific adsorbents, and integrated technologies, which offer potential solutions for managing and utilizing As-contaminated soils on the plateau.
Collapse
Affiliation(s)
- Xitong Li
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chuangchuang Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Aofan Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Tieliang Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Qiwen Zhou
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
2
|
Mu D, Li P, De Baets B, Li D, Li Z, He S. A multi-perspective exploration of the salinization mechanisms of groundwater in the Guanzhong Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177421. [PMID: 39521077 DOI: 10.1016/j.scitotenv.2024.177421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
A comprehensive understanding of the salinization of groundwater in the Guanzhong Basin, China, is crucial for ensuring sustainable groundwater development. However, the mechanism driving salinization in different regions of the basin remains unclear. Therefore, this study employed multivariate statistical methods, hydrochemical analysis, isotope studies, and hydrochemical modeling to uncover the factors and processes influencing groundwater salinization. The results indicate significant regional variations in total dissolved solids (TDS), with concentrations exceeding 1000 mg/L predominantly occurring to the north of the Weihe River and the east of the Jinghe River. The correlations of groundwater chloride (Cl-) with Cl/Br molar ratio and stable isotopes show that groundwater salinity in the Guanzhong Basin is mainly controlled by mineral dissolution, and evaporation. In addition, human activities, such as vertical irrigation recharge and excessive fertilizer use, exacerbate local salinity levels. Irrigation activities worsen the shallow groundwater salt enrichment in the runoff zone of the central basin, revealed by the high salinity (TDS>3000 mg/L), high Cl/Br ratios (>2000), moderate δ2H (-57.5 to -67.5 ‰) and moderate δ18O (-8.1 to -8.9 ‰). High salinity (TDS>1000 mg/L), high nitrate concentration (>100 mg/L), and moderate Cl- (100 to 500 mg/L) indicate the impact of excessive fertilizer use. It is worth noting that intensive groundwater withdrawal disrupts the dynamic balance within the aquifer, causing shallow high-saline groundwater to percolate downward, thereby increasing the risk of deep groundwater pollution. The research enhances the understanding of groundwater salinity transport and provides insights into the effects of groundwater salinization in the irrigation area.
Collapse
Affiliation(s)
- Dawei Mu
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No.126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Dongfeng Li
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an 710024, Shaanxi, China
| | - Zhaoyu Li
- PowerChina Sinohydro Bureau 3 Co., LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an 710024, Shaanxi, China
| | - Song He
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an 710065, Shaanxi, China
| |
Collapse
|
3
|
Li J, Dai J, Yang L, Wang H. Enrichment mechanism and probabilistic health risk assessment of high-fluoride groundwater in Gaomi City, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:26. [PMID: 39704833 DOI: 10.1007/s10653-024-02308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024]
Abstract
Fluoride (F) is the most important inorganic pollutant in groundwater that affects human health, and analyzing the causes of high-fluoride groundwater is a prerequisite for protecting the health of residents. To comprehensively understand the enrichment characteristics of groundwater in the high-fluoride areas, this study systematically investigated the concentrations of fluoride in Gaomi City, a typical study area in the Jiaolai Plain and explored the spatiotemporal distribution patterns, enrichment mechanisms, and the probabilistic health risk associated with F-. The results indicate that there is serious fluorine pollution in groundwater, which is mainly concentrated in the alluvial plain in the north and affected by topographical and aquifer characteristics. Favorable runoff conditions effectively improve the fluoride status of shallow groundwater on both sides of rivers and in hilly areas. Hydrogeochemical methods reveal the mechanism of fluoride enrichment. The relative contributions rates of different hydrogeochemical processes to the fluoride enrichment are as follows: dissolution and precipitation (39.02%) > cation exchange (25.25%) > competitive adsorption (19.48%) > seawater intrusion (3.14%) > evaporative and concentration (1.99%). Health risk assessment based on Monte Carlo simulation shows that health risk susceptibilities of different populations are infants (76.07%), children (66.59%), teenagers (44.54%), and adults (5.68%), respectively. In addition, targeted management suggestions are put forward regarding the enrichment mechanisms of fluoride in groundwater and its impact on health. These findings have significant implications for controlling regional diffuse F- contamination in groundwater, protecting public health, and promoting social development in regions with a high risk of groundwater fluoride contamination.
Collapse
Affiliation(s)
- Jialiang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Jierui Dai
- Shandong Institute of Geological Survey, Jinan, 250013, China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Hongjin Wang
- Shandong Institute of Geological Survey, Jinan, 250013, China
| |
Collapse
|
4
|
Lone SA, Jeelani G, Mukherjee A. Hydrogeochemical controls on contrasting co-occurrence of geogenic Arsenic (As) and Fluoride (F -) in complex aquifer system of Upper Indus Basin, (UIB) western Himalaya. ENVIRONMENTAL RESEARCH 2024; 260:119675. [PMID: 39059621 DOI: 10.1016/j.envres.2024.119675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Arsenicosis and fluorosis have become severe health hazards associated with the drinking of Arsenic (As) and Fluoride (F-) contaminated groundwater across south-east Asia. Although, significant As and F- concentration is reported from major Himalayan river basins but, the hydrogeochemical processes and mechanisms controlling their contrasting co-occurrence in groundwater is still poorly explored and understood. In the present study, groundwater samples were collected from phreatic and confined aquifers of Upper Indus Basin (UIB), India to understand the hydrogeochemical processes controlling the distribution and co-occurrence of geogenic As and F- in this complex aquifer system. Generally, the groundwater is circum-neutral to alkaline with Na+-HCO3-, Ca2+-Na+-HCO3- and Ca2+-Mg2+-HCO3- water facies signifying the dominance of silicate and carbonate dissolution. The poor correlation of As and F- in groundwater depicted that these geogenic elements have discrete sources of origin with distinct mechanisms controlling their distribution. As enrichment in groundwater is associated with high pH, Fe, Mn and NH4-N suggesting dominance of metal oxide/hydroxide reduction with organic matter degradation. However, F- enrichment in groundwater is associated with high pH, HCO3- and Na+, which is assisted by the incessant dissolution of fluorinated minerals. The study also revealed that high HCO3- facilitates the exchange of hydroxides (OH-) with As and F- on sediment surfaces that contribute to As and F- enrichment in groundwater through desorption. 70% groundwater samples have As and F- concentration above the permissible limit given by WHO. Therefore, continuous exposure to these contaminants may pose severe health hazard of arsenicosis and fluorosis to people living in the region and downstream. The study provides insights into geological sources, hydrogeochemical processes and mechanisms controlling distribution of As and F- in groundwater that will help in developing the appropriate measures to mitigate the impact these contaminants on human health.
Collapse
Affiliation(s)
- Suhail A Lone
- Department of Earth Sciences, University of Kashmir Srinagar, 190006, India
| | - Gh Jeelani
- Department of Earth Sciences, University of Kashmir Srinagar, 190006, India.
| | - Abhijit Mukherjee
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, WB, 721302, India
| |
Collapse
|
5
|
Li M, Zheng Z, Niu C, Quan L, Liu C, Li X, Shi C, Li D, Zhao L, Han S, Hu C. Prediction of water level at Huayuankou station based on rating curve. Sci Rep 2024; 14:20890. [PMID: 39244628 PMCID: PMC11380677 DOI: 10.1038/s41598-024-71510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
The construction of large reservoirs has modified the process of water and sediment transport downstream, resulting in changes in the morphology of the river cross-section. Changes in water and sand transport and cross-sectional morphology are reflected in the rating curve at the cross-section. This study analyzed the variations in the rating curve at the Huayuankou (HYK) section and their influencing factors, and conducted water level predictions based on this relationship. The findings revealed that while the annual mean water level has shown a declining tendency over the past 20 years, the annual mean discharge has shown a constant pattern. The rating curve at this stretch narrowed from a rope-loop type curve in its natural condition to a more stable single curve as a result of the construction of the dam upstream of the HYK section. The effect of pre-flood section morphology and the water-sediment process on the scattering degree of the rating curve is inverse; increasing roughness and hydraulic radius decreases scattering degree, while increasing sand content and sand transport rate increases scattering degree. Using the measured data from 2020 as an example, the feasibility of predicting cross-sectional water levels using the rating curve was verified. The prediction results were accurate when the flow was between 1000 and 2800 m3/s; However, when the flow was between 2800 and 4000 m3/s, the forecast results were typically slightly lower than the measured values. Overall, the method demonstrates good predictive accuracy. Insight from the method can be used to predict water levels to better inform decision making about water resources management, and flood emergency response in the lower Yellow River.
Collapse
Affiliation(s)
- Ming Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao Zheng
- Henan Yellow River Engineering and Consulting Co., LTD, Zhengzhou, 450003, China
- Henan Engineering Research Center for Protection and Governance of Yellow River, Zhengzhou, 450003, China
| | - Chaojie Niu
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Liyu Quan
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Chengshuai Liu
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Shi
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China
| | - Dongyang Li
- Henan Yellow River Engineering and Consulting Co., LTD, Zhengzhou, 450003, China
| | - Lianjun Zhao
- Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Shasha Han
- Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
- State Key Laboratory of Hydro-science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Caihong Hu
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Cao W, Zhang Z, Fu Y, Zhao L, Ren Y, Nan T, Guo H. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning. WATER RESEARCH 2024; 259:121848. [PMID: 38824797 DOI: 10.1016/j.watres.2024.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Chronic exposure to elevated geogenic arsenic (As) and fluoride (F-) concentrations in groundwater poses a significant global health risk. In regions around the world where regular groundwater quality assessments are limited, the presence of harmful levels of As and F- in shallow groundwater extracted from specific wells remains uncertain. This study utilized an enhanced stacking ensemble learning model to predict the distributions of As and F- in shallow groundwater based on 4,393 available datasets of observed concentrations and forty relevant environmental factors. The enhanced model was obtained by fusing well-suited Extreme Gradient Boosting, Random Forest, and Support Vector Machine as the base learners and a structurally simple Linear Discriminant Analysis as the meta-learner. The model precisely captured the patchy distributions of groundwater As and F- with an AUC value of 0.836 and 0.853, respectively. The findings revealed that 9.0% of the study area was characterized by a high As risk in shallow groundwater, while 21.2% was at high F- risk identified as having a high risk of fluoride contamination. About 0.2% of the study area shows elevated levels of both of them. The affected populations are estimated at approximately 7.61 million, 34.1 million, and 0.2 million, respectively. Furthermore, sedimentary environment exerted the greatest influence on distribution of groundwater As, with human activities and climate following closely behind at 29.5%, 28.1%, and 21.9%, respectively. Likewise, sedimentary environment was the primary factor affecting groundwater F- distribution, followed by hydrogeology and soil physicochemical properties, contributing 27.8%, 24.0%, and 23.3%, respectively. This study contributed to the identification of health risks associated with shallow groundwater As and F-, and provided insights into evaluating health risks in regions with limited samples.
Collapse
Affiliation(s)
- Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Zhuo Zhang
- Tianjin Center (North China Center for Geoscience Innovation), China Geological Survey, Tianjin 300170, China.
| | - Yu Fu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Lihua Zhao
- Hebei Provincial academy of water resources, Shijiazhuang 050057, China
| | - Yu Ren
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Tian Nan
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
7
|
Biswas T, Chandra Pal S, Saha A, Ruidas D. Arsenic and fluoride exposure in drinking water caused human health risk in coastal groundwater aquifers. ENVIRONMENTAL RESEARCH 2023; 238:117257. [PMID: 37775015 DOI: 10.1016/j.envres.2023.117257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Groundwater (GW) is a precious resource for human beings as we depend on it as a source of fresh drinking water, agricultural practices, industrial and domestic uses, etc. Extreme exposure of arsenic (As) and fluoride (F-) concentrations along the coastal GW aquifers of "South 24 Parganas and East Medinipur" diluted the quality of GW and created serious health issues. Various chronic health disorders such as - black foot disease, fluorosis skin cancer, cardiac problems, and other water borne diseases have been noticed in these two coastal districts. The comprehensive entropy-weighted water quality index (EWQI) and health risk assessment (HRA) were applied to evaluate the quality of GW and probable health risks in the coastal districts. Monte Carlo simulation and sensitivity analysis methods were simultaneously adopted to identify the non-carcinogenic health risk assessment due to regular ingestion of contaminated GW. As the study region is densely populated and part of the Sundarbans Ramsar site, it has greater importance at the international level along with regional importance to address the GWQ of this region. The major findings of the present study highlight that almost 55% of the study area is confronting serious GW quality issues and associated probable health risk (HR) due to the intense accumulation of As and F- in the GW aquifers of the study area. Children's health is more vulnerable due to the consumption of As containing GW, and adults are highly affected due to the intake of F- bearing GW in the coastal districts. The findings of the current study will draw the attention of hydrologists, groundwater management authorities, government bodies, and NGOs to regulate and monitor the GW aquifers routinely, enhance GW quality, minimizing the health hazards and sustainable water management in a more scientific and sustainable way which must be advantageous for coastal people.
Collapse
Affiliation(s)
- Tanmoy Biswas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India.
| | - Asish Saha
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Dipankar Ruidas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| |
Collapse
|
8
|
Chen J, Wang S, Zhang S, Bai Y, Zhang X, Chen D, Hu J. Identifying the hydrochemical features, driving factors, and associated human health risks of high-fluoride groundwater in a typical Yellow River floodplain, North China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8709-8733. [PMID: 37707643 DOI: 10.1007/s10653-023-01748-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Fluoride enrichment (> 1.5 mg/L) in groundwater has become a global threat, particularly given the hazards to human health. This study collected 58 unconfined groundwater samples from Fengpei Plain in June 2022 for hydrochemical and stable isotope analyses combined with multiple methods to explore sources, influencing factors, and potential health hazards of groundwater F-. The results showed that groundwater F- concentration ranged from 0.08 to 8.14 mg/L, with an average of 1.91 mg/L; over 41.4% of them exceeded the acceptable level of 1.5 mg/L prescribed by the World Health Organization (WHO). The dominant hydrochemical facies changed from Ca·Mg-HCO3 and Ca·Mg-SO4·Cl type in low-F- groundwater to Na-HCO3 and Na-SO4·Cl water types in high-F- groundwater. The Self-Organizing Map (SOM) and ionic correlation analysis indicated that F- is positively correlated to pH, EC, Na+, K+, SO42-, and TDS, but negatively to Ca2+ and δ18O. Groundwater F- accumulation was primarily driven by F--bearing minerals dissolution such as fluorite. Simultaneously, the carbonates precipitation, positive cation exchange processes, and salt effect were conducive to groundwater F- enrichment. However, competitive adsorption between OH-/HCO3- and F-, evaporation, and anthropogenic activities only had a weak effect on the F- enrichment in groundwater. The hazard quotient (HQ) assessment results show that 67.2% of groundwater samples pose a non-carcinogenic risk (HQ > 1) for infants, followed by 53.4% for children, 32.8% for females, and 25.9% for males. The Monte Carlo simulation results agreed with those of the deterministic model that minors are more susceptible than adults. These findings are vital to providing insights into the geochemical behavior, driving factors, and drinking water safety of high-F- groundwater worldwide.
Collapse
Affiliation(s)
- Jing Chen
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Shou Wang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China.
| | - Shuxuan Zhang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Yanjie Bai
- Nanjing Hydraulic Research Institute, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing, 210029, China
| | - Xiaoyan Zhang
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Dan Chen
- College of Agricultural Science and Engineering, Hohai University, No.8 Focheng West Road, Nanjing, 211100, Jiangsu, China
| | - Jiahong Hu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of CAS, Shijiazhuang, 050021, Hebei, China
| |
Collapse
|
9
|
Ahmad Z, Fatima SB, Masood N, Ullah F, Kamal S, Farooqi A. Spatial distribution of drinking and irrigation water quality in different climatic zones of Baluchistan, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103801-103822. [PMID: 37695479 DOI: 10.1007/s11356-023-29251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/05/2023] [Indexed: 09/12/2023]
Abstract
Baluchistan's water profile was developed by dividing it into seven zones (Northern Highlands-NH, Southern Highlands-SH, Quetta Valley-QV, Desert-D, Sibbi Plains-SP, Coastal Lasbella-CL, Coastal Gwadar-CG) based on geography, water availability, and climate of the area. A total of 106 water samples were collected from karaiz, spring water, and tube wells. Spatial distribution of EC, TDS, TH, SO42-, Cl-, Na+, and K+ showed an increasing trend in concentration from the highlands towards the desert and coastal zones. For anion, HCO3- is predominant in NH, SH, and QV, Cl- in D, CL, and CG and only SO42- in SP, whereas the cationic trend in overall zones is Na+>Ca2+>Mg2+>K+. In the NH, SH, QV, and SP zones, the physicochemical parameters met the drinking water quality guidelines; however, D, CL, and CG exceeded in almost all quality parameters. Furthermore, the drinking water quality index (WQI) shows excellent to good water quality in NH, SH, QV, and D zones, while CL and CG fall in poor to unsuitable water classes. In terms of hydrogeochemical facies, maximum water samples from NH fall in Ca-Mg-HCO3, and SH, QV, and SP in Ca-Mg-Cl type, where major ion chemistry is controlled by rock-weathering, while D, CL, and CG fall in the NaCl type, where evaporation is dominant. Similarly, irrigation water quality parameters (EC, SAR, RSC, Na%, MH%, PI, SSP, and KR) reveal that NH, SH, QV, and SP have suitable water for irrigation, and D, CL, and CG require proper treatment. Additionally, USSL and Wilcox's diagrams indicated that NH, SH, QV, and SP have "excellent to permissible"; however, D, CL, and CG have "permissible to unsuitable" class water, requiring special management practices. Consequently, appropriate control measures and targeted water purification programmes should be implemented to protect the public health and sustainability of water resources in Baluchistan.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Environmental Hydro Geochemistry Lab, Department of Environmental Science, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shehla Batool Fatima
- Environmental Hydro Geochemistry Lab, Department of Environmental Science, Quaid-i-Azam University, Islamabad, Pakistan
| | - Noshin Masood
- Environmental Hydro Geochemistry Lab, Department of Environmental Science, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fath Ullah
- Department of Environmental Science, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Abida Farooqi
- Environmental Hydro Geochemistry Lab, Department of Environmental Science, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
10
|
Wang X, Weerasinghe RNN, Su C, Wang M, Jiang J. Origin and Enrichment Mechanisms of Salinity and Fluoride in Sedimentary Aquifers of Datong Basin, Northern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1832. [PMID: 36767199 PMCID: PMC9914851 DOI: 10.3390/ijerph20031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The exposure of inhabitants to high fluoride and saline groundwater is the main health issue in Datong Basin, Northern China. This study aims to elucidate the spatial distribution and the mechanisms of high fluoride and salinity occurrence in the shallow sedimentary aquifers of the Datong Basin. Groundwater salinity and fluoride content, and their association with measured hydrochemical parameters, were conducted using multivariate statistical analyses. The analytical results revealed that the concentrations of fluoride and total dissolved solids (TDS) show dramatic variations within the study area. Around 41.4% of groundwater samples contained high-level fluoride concentration (F- > 1.5 mg/L), whereas 32.8% contained elevated-level TDS (TDS > 1000 mg/L). Both fluoride and TDS concentrations had elevated trends towards the central part of the basin. Shallow groundwater was seriously affected by evaporation and evapotranspiration, which can be the critical factors responsible for rather high TDS and F- concentrations in shallow aquifers. Water-rock reactions including silicate hydrolysis, dissolution-precipitation of carbonates and evaporates, adsorption, and ion exchange processes, as well as evapotranspiration, are the main governing factors for salinity and fluoride enrichment in groundwater. Solubility control of F-bearing and carbonate minerals is the dominant mechanism affecting F- levels. Prevailing conditions of alkaline pH, moderate TDS and Na+, high HCO3-, and lower Ca2+ content facilitate the enrichment of fluoride in the study area. Excessive evapotranspiration can be also the most influencing factor responsible for high fluoride and TDS content, due to the extended residence time of groundwater and the arid climate of the central part of the Datong Basin.
Collapse
Affiliation(s)
- Xianguo Wang
- Henan Geological Engineering Survey Institute, Zhengzhou 450001, China
| | | | - Chunli Su
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Mengzhu Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Jiaqi Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
11
|
Xu M, Zhang K, Wang Y, Zhang B, Mao K, Zhang H. Health Risk Assessments and Microbial Community Analyses of Groundwater from a Heavy Metal-Contaminated Site in Hezhou City, Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:604. [PMID: 36612924 PMCID: PMC9819039 DOI: 10.3390/ijerph20010604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/14/2023]
Abstract
In industrial site groundwater, heavy metal pollution is relatively common, causing great harm to the surrounding environment and human health. To explore the relationships between the heavy metal concentration, health risks and microbial community distribution, the groundwater from a polluted site at an abandoned processing plant in Hezhou City, China, is taken as the research object. A health risk assessment model recommended by the United States Environmental Protection Agency (US EPA) is used for the evaluation, and high-throughput sequencing technology is used to analyze the characteristics of the microbial community in the groundwater. The results show that the heavy metal pollution levels of five monitoring wells are different. The monitoring well labelled HLJ2 is polluted by Cu, Mn, Ni and Cd, and the other four monitoring wells are polluted by As and Cd to varying degrees. The carcinogenic risk values of heavy metals in the groundwater environments of the five monitoring wells are all greater than the acceptable range, and only the noncarcinogenic risk value of the HLJ2 monitoring well exceeds 1, which greatly impacts health. The risks posed by the contaminants in the site groundwater through the ingestion route of drinking water are greater than those caused by the ingestion route of skin contact. The groundwater environments of the five monitoring wells contain Proteobacteria and Patescibacteria, indicating that these two bacteria have certain tolerances to heavy metal pollution. The microbial community composition varies between the monitoring wells, suggesting that different concentrations and types of heavy metal contamination promote different types of bacterial growth. Studies have shown that Proteobacteria have many heavy metal resistance genes, improving their tolerance in heavy metal-polluted environments; additionally, Proteobacteria can transport heavy metals, which is conducive to the restoration of polluted sites.
Collapse
Affiliation(s)
- Mingjie Xu
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, China
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yiduo Wang
- College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Bin Zhang
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, China
- School of food and biotechnology of Xihua University, Chengdu 610039, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|