1
|
Li J, Dai Y, Pan Z, He J, Chang L. Monitoring nanoplastic aging in situ by moth-eye mimic plasmonic substrates. Anal Chim Acta 2025; 1358:344068. [PMID: 40374254 DOI: 10.1016/j.aca.2025.344068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/17/2025]
Abstract
Micro-nano plastics aging is crucial as it determines the environmental fate of each plastic particle, yet few studies involved in situ aging of nanoplastics. Herein, we utilized nanosphere lithography combined with goldnanorod assembly to prepare a moth-eye mimic plasmonic substrate featuring excellent SERS performance. The substrate was applied to in situ characterize the degradation process of PS nanoplastics during UV aging. Raman spectra evidence that the substrate is sensitive to superficial chemical changes of PS nanoplastics at initial stage during 24 h of continuous UV aging. The disruption of the benzene ring skeleton, the oxidation of the side chains of PS nanoplastics during UV aging, and the presence of oxidized methylene straight chains were identified. Practical applications in environmental sample revealed the chemical changes of PP, PS, and PE, which confirm the great potential of this SERS substrate for aging studies of nanoplastics.
Collapse
Affiliation(s)
- Jiayu Li
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Yujie Dai
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhicheng Pan
- National Engineering Laboratory of Circular Economy, Sichuan University of Science and Engineering, Zigong, 643000, PR China; National Postdoctoral Research Station, Haitian Water Group, Chengdu, 610000, PR China.
| | - Jing He
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; National Postdoctoral Research Station, Haitian Water Group, Chengdu, 610000, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Zhang W, Wang W, Yao Z, Zhang T, Jiao H, Wang H. Leaching-driven transformations of tire wear particles (TWPs): Uncovering the neglected environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138529. [PMID: 40359750 DOI: 10.1016/j.jhazmat.2025.138529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Extensive research has been conducted on the leaching behavior and risks of the leachate of tire wear particles (TWPs) in aquatic environments. However, the leaching-driven transformations of TWPs and the subsequent environmental impacts have been largely overlooked. This work examines the changes in physicochemical properties of TWPs during leaching in several water bodies, thereby facilitating a more thorough assessment of the environmental impacts. The results revealed that the environmental behavior related properties of TWPs, including surface morphology, pores, contact angel, zeta potential, functional groups, and surface adsorption sites varied at different levels during leaching. The ionic strength and organic matter content of water body highly determine the above transformations. The carbon index (CI) and O/C ratio of TWPs increased by 55.40 % and 14.27 % after leached in the water for 30 days, while the adsorption capacity of the TWPs for tetracycline (TC) and oxytetracycline (OTC) decreased by 27 % and 24.63 %, respectively. Herein, the changes in the functional groups and polarity during leaching highly influenced the adsorption performance of leached-TWPs. This study provides novel insight into understanding the leaching behavior of TWPs in aquatic environments and highlights an urgent need to assess the environmental implications of leaching-driven transformations of TWPs.
Collapse
Affiliation(s)
- Wenlong Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Weixue Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Zhimin Yao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Tengyue Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Huifeng Jiao
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, China; Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, China.
| |
Collapse
|
3
|
Town RM, van Leeuwen HP, Duval JFL. Sorption kinetics of metallic and organic contaminants on micro- and nanoplastics: remarkable dependence of the intraparticulate contaminant diffusion coefficient on the particle size and potential role of polymer crystallinity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:634-648. [PMID: 40018903 DOI: 10.1039/d4em00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We developed a mechanistic diffusion model to describe the sorption kinetics of metallic and organic contaminants on nano- and micro-plastics. The framework implements bulk depletion processes, transient fluxes, and fully adaptable particle/water boundary conditions, i.e. not only the typically assumed simple linear Henry regime, which is not applicable to many contaminant-particle situations. Thus, our model represents a flexible and comprehensive theory for the analysis of contaminant sorption kinetics, which goes well beyond the traditional empirical pseudo first or second order kinetic equations. We applied the model to the analysis of a large body of literature data on the equilibrium and kinetic features of sorption of a wide range of contaminants by diverse types and sizes of plastic particles. Results establish the paramount importance of sorption boundary conditions (Henry, Langmuir, or Langmuir-Freundlich) and reveal interesting and often overlooked sorption features that depend on the plastic particle size and the extent to which the target compound is depleted in the bulk medium. The greater degree of polymer crystallinity reported for smaller particles may underlie our findings that the intraparticulate contaminant diffusion coefficient decreases with a decreasing particle size. We establish a universal law to predict the sorption kinetics and diffusion of any compound within any plastic phase, which has far reaching importance across many domains relevant to the environment and human health.
Collapse
Affiliation(s)
- Raewyn M Town
- ECOSPHERE, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Herman P van Leeuwen
- ECOSPHERE, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | | |
Collapse
|
4
|
Xiong Y, Zhao Z, Peng K, Zhai G, Huang X, Zeng H. Microplastic interactions with co-existing pollutants in water environments: Synergistic or antagonistic roles on their removal through current remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124355. [PMID: 39933381 DOI: 10.1016/j.jenvman.2025.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Composite water pollution, caused by microplastics (MPs) and co-occurring pollutants, is an emerging issue that induces synergistic toxicity. Multidimensional interactions occur between MPs and co-existing pollutants in a composite system, which alter the behavior of each component, resulting in unpredictable effects on the treatment processes. However, significant gaps exist in current review papers regarding MP‒pollutant interaction mechanisms and the corresponding synergistic or antagonistic effects on their removal processes. This review comprehensively describes the latest research in composite water pollution caused by MPs and various other pollutants with different compositions and states, systematically discusses their interaction mechanisms, and critically evaluates the impact of co-existing contaminants on the treatment performance of current remediation technologies. Based on current research progress and gaps, opportunities, challenges, and perspectives for future research directions are proposed. This review highlights state-of-the-art research related to composite water pollution caused by MPs and various pollutants, which is expected to inspire new strategies for the effective removal of multiple contaminants from the aquatic environment.
Collapse
Affiliation(s)
- Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China
| | - Gongqi Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
5
|
Fan J, Yang J, Cheng F, Zhang S, Sun J. Adsorption and migration of sulfamethoxazole driven by suspended particulate matter in water body. MARINE POLLUTION BULLETIN 2025; 211:117488. [PMID: 39708595 DOI: 10.1016/j.marpolbul.2024.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The extensive use of antibiotics has led to significant antibiotic pollution in water bodies, and suspended particulate matter (SPM) is known to be a key carrier of antibiotics in rivers. In this work, the adsorption characteristics of sulfamethoxazole (SMX) on SPM was investigated through batch adsorption and annular flume experiments, and the MIKE 21 model was employed to simulate the migration of SMX and SPM. Results revealed that most SMX adsorption occurred rapidly within 20 min, and 80 % of the equilibrium adsorption capacity was reached. Multilayer adsorption was confirmed by Freundlich model, and adsorption process was found to be spontaneous, endothermic, disordered, and the equilibrium adsorption amounts of SMX on SPM increased with salinity and organic matter increase. SMX desorption from SPM occurred upon the sudden changes of hydrodynamic states, nearly reaching the one-fifth of the SMX equilibrium adsorption amounts within 30 min and the re-adsorption of SMX on SPM would occur with water remained stationary or the re-disturbance time prolonged. The dynamic adsorption process of SMX related with the physicochemical property changes of SPM, which was contributed to the hydrogen bonds, π-π interactions, surface complexation, significantly influenced by the pore filling at the macropore and mesopore scales. The MIKE 21 simulations confirmed hydrodynamic states as the primary factors affecting the migration of SMX and SPM. SMX concentrations in the water would decrease in the presence of SPM, leading to the slower downstream migration of SMX.
Collapse
Affiliation(s)
- Jianxin Fan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Jiaxin Yang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Fulong Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shikuo Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jiaoxia Sun
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
6
|
Duong LTK, Nguyen TTT, Tran TV. Combined pollution of tetracyclines and microplastics in the aquatic environment: Insights into the occurrence, interaction mechanisms and effects. ENVIRONMENTAL RESEARCH 2024; 263:120223. [PMID: 39448014 DOI: 10.1016/j.envres.2024.120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Tetracyclines, a widely used class of antibiotics, and synthetic plastic products are both prevalent in the environment. When released into water bodies, these pollutants can pose significant risks due to their daily influx into aquatic ecosystems. Microplastics can adsorb tetracyclines, acting as a transport vector that enhances their impact on aquatic species. Understanding the co-exposure effects of microplastics and tetracyclines is crucial. This review comprehensively examines the occurrence and distribution of microplastics and tetracyclines across various environmental contexts. The interactions between these two contaminants are primarily driven by electrostatic interactions, hydrophobic effects, hydrogen bonding, π-π interactions, and others. Factors such as the presence of heavy metals, ions, and dissolved organic matter can influence the adsorption and desorption of tetracyclines onto microplastics. The stability of microplastic-tetracycline complexes is highly dependent on pH conditions. The combined pollution tetracyclines and microplastics leads to negative impacts on marine species. Future research should focus on understanding the adsorption behavior of tetracyclines on microplastics and developing effective treatment techniques for these contaminants in aquatic environments.
Collapse
Affiliation(s)
- Loan Thi Kim Duong
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Nong Lam University Ho Chi Minh City, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Nong Lam University Ho Chi Minh City, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
7
|
Kong Y, Zhou Q, Wang R, Chen Q, Xu X, Zhu L, Wang Y. Alleviating effects of microplastics together with tetracycline hydrochloride on the physiological stress of Closterium sp. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1588-1600. [PMID: 39099448 DOI: 10.1039/d4em00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Microplastics have significant influence on both freshwater cyanobacteria and marine microalgae, especially under co-exposure with other pollutants such as heavy metals, antibiotics, and pharmaceuticals. In the present study, combined effects of microplastics (polyethylene terephthalate (PET) or polybutylene terephthalate (PBT)) and tetracycline hydrochloride (TCH) on the microalgae Closterium sp. were studied to evaluate their acute toxicity, and the cell density, total chlorophyll concentration, photosynthetic activity, antioxidant system, and subcellular structure of Closterium sp. under different treatments were used to explain the physiological stress mechanism of the combined effects. The results indicate that both the single and combined treatments have inhibition effects on the cell growth and photosynthetic activity, with inhibition efficiencies (in terms of cell density) of 5.0%, 9.2%, 66.7%, 55.1%, and 59.8% for PET (100 mg L-1), PBT (100 mg L-1), TCH (10 mg L-1), PET/TCH (PET 100 mg L-1 and TCH 10 mg L-1), and PBT/TCH (PBT 100 mg L-1 and TCH 10 mg L-1), respectively, and relative electron-transport rates (rETRs) of 7.3%, 12.7%, 66.8%, 54.0%, and 59.9%, respectively, for each treatment compared with the control on the 7th day. Moreover, both PET and PBT have positive effects in alleviating TCH toxicity toward Closterium sp., and at the same time, the malondialdehyde level (MDA), superoxide dismutase (SOD) activity, and catalase (CAT) activity induced by the combined treatments were much higher than those from the single microplastic treatments but lower than those from TCH treatment after 7 days. It was demonstrated that TCH causes a much more serious oxidative stress than PET/TCH and PBT/TCH, and the lower oxidative stress of the PET/TCH and PBT/TCH groups could be attributed to the adsorption of TCH to PET or PBT. This work improves the understanding of the combined toxicity effects of microplastics and TCH on Closterium sp.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qingyun Zhou
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Renjuan Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Qi Chen
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| |
Collapse
|
8
|
Cao Z, Yang C, Zhang W, Shao H. Activated persulfate for efficient bisphenol A degradation via nitrogen-doped Fe/Mn bimetallic biochar. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1149-1163. [PMID: 39215729 DOI: 10.2166/wst.2024.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
To achieve the purpose of treating waste by waste, in this study, a nitrogen-doped Fe/Mn bimetallic biochar material (FeMn@N-BC) was prepared from chicken manure for persulfate activation to degrade Bisphenol A (BPA). The FeMn@N-BC was characterized by scanning electron microscopy (SEM), X-ray diffract meter (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS) and found that N doping can form larger specific surface area. Catalytic degradation experiments showed that Fe/Mn bimetal doping not only accelerated the electron cycling rate on the catalyst surface, but also makes the biochar magnetic and easy to separate, thus reducing environmental pollution. Comparative experiments was concluded that the highest degradation efficiency of BPA was achieved when the mass ratios of urea and chicken manure, Fe/Mn were 3:1 and 2:1, respectively, and the pyrolysis temperature was 800 °C, which can almost degrade all the BPA in 60 min. FeMn@N-BC/PS system with high catalytic efficiency and low consumables is promising for reuse of waste resources and the remediation of wastewater.
Collapse
Affiliation(s)
- Zexian Cao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Changhe Yang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China E-mail:
| | - Wenqiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Huiliang Shao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Zhang L, Qin Z, Bai H, Xue M, Tang J. Photochemically induced aging of polystyrene nanoplastics and its impact on norfloxacin adsorption behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172511. [PMID: 38641106 DOI: 10.1016/j.scitotenv.2024.172511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
The co-occurrence of nanoplastics (NPs) and antibiotics in the environment is a growing concern for ecological safety. As NPs age in natural environments, their surface properties and morphology may change, potentially affecting their interactions with co-contaminants such as antibiotics. It is crucial to understand the effect of aging on NPs adsorption of antibiotics, but detailed studies on this topic are still scarce. The study utilized the photo-Fenton-like reaction to hasten the aging of polystyrene nanoplastics (PS-NPs). The impact of aging on the adsorption behavior of norfloxacin (NOR) was then systematically examined. The results showed a time-dependent rise in surface oxygen content and functional groups in aged PS-NPs. These modifications led to noticeable physical changes, including increased surface roughness, decreased particle size, and improved specific surface area. The physicochemical changes significantly increased the adsorption capacity of aged PS-NPs for norfloxacin. Aged PS-NPs showed 5.03 times higher adsorption compared to virgin PS-NPs. The adsorption mechanism analysis revealed that in addition to the electrostatic interactions, van der Waals force, hydrogen bonding, π-π* interactions and hydrophobic interactions observed with virgin PS-NPs, aged PS-NPs played a significant role in polar interactions and pore-filling mechanisms. The study highlights the potential for aging to worsen antibiotic risk in contaminated environments. This study not only enhances the comprehension of the environmental behavior of aged NPs but also provides a valuable basis for developing risk management strategies for contaminated areas.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China.
| | - Zhi Qin
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - He Bai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - Manyu Xue
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| | - Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, PR China
| |
Collapse
|
10
|
Pang J, Chen H, Guo H, Lin K, Huang S, Lin B, Zhang Y. High-sensitive determination of tetracycline antibiotics adsorbed on microplastics in mariculture water using pre-COF/monolith composite-based in-tube solid phase microextraction on-line coupled to HPLC-MS/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133768. [PMID: 38422729 DOI: 10.1016/j.jhazmat.2024.133768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Microplastics (MPs) act as carriers for organic pollutants (e.g. antibiotics) and microorganisms (e.g. bacteria) in waters, leading to the proliferation of antibiotic resistance genes. Moreover, the antibiotics adsorbed on MPs may exacerbate this process. For further research, it is necessary to understand the types and amounts of antibiotics adsorbed on MPs. However, due to the heavy work of MPs collection and sample pretreatment, there is a lack of analytical methods and relevant data. In this study, an in-tube solid phase microextraction (IT-SPME) on-line coupled to HPLC-MS/MS method based on amorphous precursor polymer of three-dimensional covalent organic frameworks/monolith-based composite adsorbent was developed, which could efficiently capture, enrich and analyze tetracycline (TCs) antibiotics. Under the optimal extraction parameters, the developed method was capable of detecting TCs at levels as low as 0.48-1.76 pg. This method was applied to analyze the TCs adsorbed on MPs of different particle sizes in mariculture water for the first time, requiring a minimum amount of MPs of only 1 mg. Furthermore, it was observed that there could be an antagonistic relationship between algal biofilm and TCs loaded on MPs. This approach could open up new possibilities for analyzing pollutants on MPs and support deeper research on MPs.
Collapse
Affiliation(s)
- Jinling Pang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Hongzhe Chen
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Huige Guo
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Kunning Lin
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Shuyuan Huang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| | - Beichen Lin
- College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
| | - Yuanbiao Zhang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China.
| |
Collapse
|
11
|
Zhao X, Wang A, Zhai L, Gao J, Lyu S, Jiang Y, Zhong T, Xiao Y, Yu X. Magnetic solid phase extraction coupled to HPLC-UV for highly sensitive analysis of mono-hydroxy polycyclic aromatic hydrocarbons in urine. Anal Chim Acta 2024; 1285:342020. [PMID: 38057058 DOI: 10.1016/j.aca.2023.342020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND As a common pollutant, the carcinogenic properties of polycyclic aromatic hydrocarbons have garnered considerable attention. Trace metabolites of polycyclic aromatic hydrocarbons can be detected in urine as a non-invasively approach to monitor the exposure level. Nonetheless, the urine samples have the disadvantages of being large in volume and containing numerous impurities. Given the growing demand to study metabolites with low abundance and potential biomarkers, there is a pressing need for a preconcentration and high-throughput technique for effectively handling complex liquid samples. RESULTS Polystyrene-coated magnetic nanoparticles were used to establish a novel magnetic extraction method for monohydroxy polycyclic aromatic hydrocarbons in urine samples. Polystyrene magnetic nanoparticles are an ideal absorbent for solid-phase extraction. After the material was mixed with the sample and adsorbed the target analyte, the analytes on the material were eluted and quantified using high-performance liquid chromatography. Influencing factors were optimized, and the proposed method achieved desirable sensitivity in analyzing low-abundance metabolites in large volumes of complex urine samples. The recoveries of intra-day and inter-day were 78.0-118.0 % and 81.0 %-115.0 %, respectively. The intra-day and inter-day reproducibility were less than 4.5 % and 8.6 %, respectively. The limits of detection were in the range of 0.009-0.041 ng mL-1, and the limits of quantification were in the range of 0.030-0.135 ng mL-1. SIGNIFICANCE AND NOVELTY The application of reusable polystyrene-coated magnetic solid-phase nanoparticles as adsorbents makes the extraction of monohydroxy polycyclic aromatic hydrocarbons from urine samples economical and environmentally benign. The proposed method is simple, sensitive, and efficient compared to existing techniques. The nanoparticles are easy to prepare, showing potential for rapid screening of complex bulk bio-samples in batches with high efficiency and low budget.
Collapse
Affiliation(s)
- Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Anyu Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Lingzi Zhai
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Jiuhe Gao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Sizhe Lyu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Yingshan Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Rd, Shenhe Dist, Shenyang, Liaoning, 110016, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macau; Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China.
| |
Collapse
|
12
|
Wen Q, Liu N, Qu R, Ge F. High salinity promotes the photoaging of polystyrene microplastics with humic acid in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165741. [PMID: 37487889 DOI: 10.1016/j.scitotenv.2023.165741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The photoaging of microplastics (MPs) accumulated in the sea can be influenced by humic acid (HA). However, the role of salinity cannot be ignored, as it may potentially disrupt the interaction between MPs and HA, thereby altering the photoaging of MPs. Herein, this study investigated how salinity influences the effect of humic acid (HA, derived from lignite) on the photoaging of polystyrene microplastics (PS MPs) in artificial and natural seawater. The results revealed that HA promoted the photoaging of PS MPs under both low (5 PSU) and high salinity (35 PSU) in light conditions (L), reflected in the formation of fragments, the production of oxygen-containing functional groups (OH, CO, and OCO), and the increase in hydrophilicity of PS MPs. Furthermore, high salinity promoted the photoaging of PS MPs with HA more significantly, as evidenced by the similar indicators and the order of oxygen/carbon atom ratio (O/C): L-HA-High (0.15) > L-HA-Low (0.10) > Unaged (0.02). Interestingly, due to the reduction of electrostatic repulsion, the adsorption of HA on photoaged PS MPs in natural and artificial high salinity seawater was 1.77 mg/g and 0.39 mg/g, respectively, which was significantly higher than those PS MPs photoaged in the low salinity seawater. Furthermore, the electron spin resonance (ESR) results confirmed that more hydroxyl radicals (OH) were generated after adsorbing HA under high salinity conditions, thus promoting the fragmentation and oxidation of PS MPs. Overall, our findings highlight the crucial role of salinity in influencing the photoaging of MPs with HA and help to assess the marine risk of MPs accurately.
Collapse
Affiliation(s)
- Qiong Wen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ruohua Qu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China.
| |
Collapse
|
13
|
Town RM, van Leeuwen HP, Duval JFL. Effect of Polymer Aging on Uptake/Release Kinetics of Metal Ions and Organic Molecules by Micro- and Nanoplastics: Implications for the Bioavailability of the Associated Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16552-16563. [PMID: 37856883 PMCID: PMC10620988 DOI: 10.1021/acs.est.3c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
The main driver of the potential toxicity of micro- and nanoplastics toward biota is often the release of compounds initially present in the plastic, i.e., polymer additives, as well as environmentally acquired metals and/or organic contaminants. Plastic particles degrade in the environment via various mechanisms and at different rates depending on the particle size/geometry, polymer type, and the prevailing physical and chemical conditions. The rate and extent of polymer degradation have obvious consequences for the uptake/release kinetics and, thus, the bioavailability of compounds associated with plastic particles. Herein, we develop a theoretical framework to describe the uptake and release kinetics of metal ions and organic compounds by plastic particles and apply it to the analysis of experimental data for pristine and aged micro- and nanoplastics. In particular, we elucidate the contribution of transient processes to the overall kinetics of plastic reactivity toward aquatic contaminants and demonstrate the paramount importance of intraparticulate contaminant diffusion.
Collapse
Affiliation(s)
- Raewyn M. Town
- ECOSPHERE,
Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Herman P. van Leeuwen
- ECOSPHERE,
Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
- Physical
Chemistry and Soft Matter, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | | |
Collapse
|
14
|
Pang X, Chen C, Sun J, Zhan H, Xiao Y, Cai J, Yu X, Liu Y, Long L, Yang G. Effects of complex pollution by microplastics and heavy metals on soil physicochemical properties and microbial communities under alternate wetting and drying conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131989. [PMID: 37453357 DOI: 10.1016/j.jhazmat.2023.131989] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Microplastics (MPs) broadly coexist with heavy metals (HMs) in soil, Cd and Cu are the main types of soil HMs contamination, in addition to polystyrene (PS), which is also widely present in the environment and prone to aging. However, differences in the effects of MPs and HMs on soil properties and microbial characteristics under alternating wetting and drying (AWD) remain unclear. Thus, this study investigated the effects of four conventional (0.2% (w/w)) and aged MPs in indoor incubation experiments on soil properties under desiccation (Dry) and AWD. We found that with the influence of the "enzyme lock" theory, the coexistence of MPs and HMs under Dry had a more pronounced effect on soil physicochemical properties, whereas the effects on soil enzyme activity under AWD were more significant. In addition, MPs decreased the available Cu by 4.27% and, conversely, increased the available Cd by 8.55%. Under Dry, MPs affected microbial function mainly through physicochemical properties, with a contribution of approximately 72.4%, whereas under AWD enzyme activity and HMs were significantly greater, with increases of 28.2% and 7.9%, respectively. These results indicate that the effects of MPs on environmental variation and microbial profiles under AWD conditions differed significantly from those under Dry.
Collapse
Affiliation(s)
- Xinghua Pang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Jie Sun
- Appraisal Center for Environment and Engineering, Ministry of Ecology and Environment, No.15 Shixing Street, Shijingshan District, Beijing 100041, China
| | - Haiquan Zhan
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Junzhuo Cai
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xiaoyu Yu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China.
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China; Key Lab of Agricultural Environment Engineering of Sichuan Provincial Education Department, No. 211 Huimin Road, Wenjiang District, Chengdu 611130, China.
| |
Collapse
|
15
|
Li Z, Chen H, Dong C, Jin C, Cai M, Chen Y, Xie Z, Xiong X, Jin M. Nitrogen doped bimetallic sludge biochar composite for synergistic persulfate activation: Reactivity, stability and mechanisms. ENVIRONMENTAL RESEARCH 2023; 229:115998. [PMID: 37127103 DOI: 10.1016/j.envres.2023.115998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
As a recycling use of waste activated sludge (WAS), we used high-temperature pyrolysis of WAS to support bimetallic Fe-Mn with nitrogen (N) co-doping (FeMn@N-S), a customized composite catalyst that activates peroxysulphate (PS) for the breakdown of tetracycline (TC). First, the performance of TC degradation was evaluated and optimized under different N doping, pH, catalyst dosages, PS dosages, and contaminant concentrations. Activating PS with FeMn@N-S caused the degradation of 91% of the TC in 120 min. Next, characterization of FeMn@N-S by XRD, XPS and FT-IR analysis highlights N doping is beneficial to take shape more active sites and reduces the loss of Fe and Mn during the degradation reaction. As expected, the presence of Fe-Mn bimetallic on the catalyst surface increases the rate of electron transfer, promoting the redox cycle of the catalyst. Other functional groups on the catalyst surface, such as oxygen-containing groups, accelerated the electron transfer during PS activation. Free radical quenching and ESR analysis suggest that the main contributor to TC degradation is surface-bound SO4•-, along with the presence of single linear oxygen (1O2) oxidation pathway. Finally, the FeMn@N-S composite catalyst exhibits excellent pH suitability and reusability, indicating a solid practicality of this catalyst in PS-based removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Zheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Haifeng Chen
- Haining Municipal Water Investment Group Co, Haining, 314400, China
| | - Chunying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chuzhan Jin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Meiqiang Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yan Chen
- Zhejiang Industrial Environmental Design and Research Institute Co., Ltd. Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Zhiqun Xie
- Center for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, Aarhus C, 8000, Denmark
| | - Xingaoyuan Xiong
- Center for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, Aarhus C, 8000, Denmark
| | - Micong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China; College of Life Sciences, Wuchang University of Technology, Wuhan, 430223, China.
| |
Collapse
|
16
|
Interactions between graphene oxide and polyester microplastics changed their phototransformation process and potential environmental risks: Mechanism insights. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|