1
|
Jiao F, Zhang X, Zhang T, Hu Y, Lu R, Ma G, Chen T, Guo H, Li D, Pan Y, Li YY, Kong Z. Insights into carbon-neutral treatment of rural wastewater by constructed wetlands: A review of current development and future direction. ENVIRONMENTAL RESEARCH 2024; 262:119796. [PMID: 39147183 DOI: 10.1016/j.envres.2024.119796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
In recent years, with the global rise in awareness regarding carbon neutrality, the treatment of wastewater in rural areas is increasingly oriented towards energy conservation, emission reduction, low-carbon output, and resource utilization. This paper provides an analysis of the advantages and disadvantages of the current low-carbon treatment process of low-carbon treatment for rural wastewater. Constructed wetlands (CWs) are increasingly being considered as a viable option for treating wastewater in rural regions. In pursuit of carbon neutrality, advanced carbon-neutral bioprocesses are regarded as the prospective trajectory for achieving carbon-neutral treatment of rural wastewater. The incorporation of CWs with emerging biotechnologies such as sulfur-based autotrophic denitrification (SAD), pyrite-based autotrophic denitrification (PAD), and anaerobic ammonia oxidation (anammox) enables efficient removal of nitrogen and phosphorus from rural wastewater. The advancement of CWs towards improved removal of organic and inorganic pollutants, sustainability, minimal energy consumption, and low carbon emissions is widely recognized as a viable low-carbon approach for achieving carbon-neutral treatment of rural wastewater. This study offers novel perspectives on the sustainable development of wastewater treatment in rural areas within the framework of achieving carbon neutrality in the future.
Collapse
Affiliation(s)
- Feifei Jiao
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tao Chen
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Zhang Z, Li D, Zhou C, Huang X, Chen Y, Wang S, Liu G. Enhanced nitrogen removal via partial nitrification/denitrification coupled Anammox using three stage anoxic/oxic biofilm process with intermittent aeration. WATER RESEARCH 2024; 255:121491. [PMID: 38520779 DOI: 10.1016/j.watres.2024.121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Pre-capturing organics in municipal wastewater for biogas production, combined with Anammox-based nitrogen removal process, improves the sustainability of sewage treatment. Thus, enhancing nitrogen removal via Anammox in mainstream wastewater treatment becomes very crucial. In present study, a three-stage anoxic/oxic (AO) biofilm process with intermittent aeration was designed to strengthen partial nitrification/denitrification coupling Anammox (PNA/PDA) in treatment of low C/N wastewater, which contained chemical oxygen demand (COD) of 79.8 mg/L and total inorganic nitrogen (TIN) of 58.9 mg/L. With a hydraulic retention time of 8.0 h, the process successfully reduced TIN to 10.6 mg/L, achieving a nitrogen removal efficiency of 83.3 %. The 1st anoxic zone accounted for 32.0 % TIN removal, with 10.3 % by denitrification and 21.7 % by PDA, meanwhile, the 2nd and 3rd anoxic zones contributed 19.4 % and 4.5 % of TIN removal, primarily achieved through PDA (including endogenous PD coupling Anammox). The 1st and 2nd intermittent zones accounted for 27.2 % and 17.0 % of TIN removal, respectively, with 13.7 %-21.3 % by PNA and 3.2 %-5.3 % by PDA. Although this process did not pursue nitrite accumulation in any zone (< 1.5 mg-N/L), PNA and PDA accounted for 35.1 % and 52.1 % of TIN removal, respectively. Only 0.21 % of removed TIN was released as nitrous oxide. The AnAOB of Candidatus Brocadia was enriched in each zone, with a relative abundance of 0.66 %-2.29 %. In intermittent zones, NOB had been partially suppressed (AOB/NOB = 0.73-0.88), mainly due to intermittent aeration and effective nitrite utilization by AnAOB since its population size was much greater than NOB. Present study indicated that the three-stage AO biofilm process with intermittent aeration could enhance nitrogen removal via PNA and PDA with a low N2O emission factor.
Collapse
Affiliation(s)
- Zhuang Zhang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Deyong Li
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Changhui Zhou
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Xiaoshan Huang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yantong Chen
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Shijie Wang
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Guoqiang Liu
- Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment and Climate, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
3
|
Chen J, Ao Z, Chen H, Wang Y, Jiang M, Qi L, Liu G, Wang H. Analyzing greenhouse gas emissions and influencing factors of 247 actual wastewater treatment plants in China using emission factor and operational data integrated methods (ODIM). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37387-37403. [PMID: 38769261 DOI: 10.1007/s11356-024-33731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
In response to China's policies on pollution control and carbon emission (CE) reductions, more stringent regulations have been implemented to evaluate CE in wastewater treatment facilities. In this study, we have analyzed CE from China's wastewater treatment plants (WWTPs) and influencing factor. Emission factor (EF) and operational data integrated methods (ODIM) were utilized to measure emissions, using data collected from 247 WWTPs over a 1-year period across seven regions in China. The average CE intensity was 0.45 kgCO2-eq/m3, affected by region, season, influent water quality, treatment processes, effluent discharge standards, and facilities. The scale effect was obvious only in the range of 2 × 105 m3/day. Underground WWTPs exhibited significantly higher CE compared to aboveground WWTPs. In summary, the assessment of CE in 247 actual WWTPs not only identifies emission reduction potential but also provides a scientific basis for formulating targeted emission reduction measures.
Collapse
Affiliation(s)
- Jiabo Chen
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Ziding Ao
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Huiling Chen
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Yanan Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Mei Jiang
- Beijing Drainage Group Co., Ltd, Beijing, 100022, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Guohua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|