1
|
Li G, Lv M, Zhang H, Zhang D, Yu H, Li Q, Wang L. Toxic effects of co-exposure to polystyrene nanoplastics and arsenic in zebrafish (Danio rerio): Oxidative stress, physiological and biochemical responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118286. [PMID: 40378726 DOI: 10.1016/j.ecoenv.2025.118286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/04/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
The issue of nanoplastics (NPs) in the aquatic environment has recently received considerable attention. Arsenic (As) is a relatively abundant and toxic metalloid element in aquatic environments. However, the potential toxic effects of As on aquatic organisms under the influence of NPs remain uncertain. In this study, zebrafish were divided into five different groups: a control group, a single As(V) (10 μg/L) treatment group and three As (10 μg/L) + polystyrene nanoplastics (PS-NPs) treatment groups (NPs at concentrations of 1, 5 and 10 mg/L, respectively) for a period of seven days using a semi-static method. The findings demonstrated that the presence of PS-NPs facilitated the accumulation of As in zebrafish liver, gill and intestine with the following promoting efficiency: liver > gill > intestine. The presence of PS-NPs enhanced the oxidative stress effects of As on the aforementioned tissues. Furthermore, the activities of glutathione-S-transferase and glutathione peroxidase in the liver and intestine were found to be instrumental in mitigating oxidative stress during co-exposure. Furthermore, the presence of PS-NPs led to a further reduction in As-induced acetylcholinesterase activity in the liver and intestine of zebrafish. The combined exposure of zebrafish to PS-NPs and As resulted in an increase in lactate dehydrogenase activity in the liver, intestine and gills. This subsequently led to a reduction in the activity of acid phosphatase and alkaline phosphatase in the aforementioned tissues, thus affecting immune dysfunction in zebrafish. The integrated biomarker response indexes indicate that combined exposures result in greater toxic effects compared to single As exposures. The findings provide a fundamental basis for the assessment of the toxic effects of combined nanoscale plastic and As pollution on aquatic organisms.
Collapse
Affiliation(s)
- Guoxin Li
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China.
| | - Min Lv
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Heng Zhang
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Dandan Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Haitao Yu
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Qingsong Li
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Lei Wang
- The Key Laboratory of Water Resources Utilization and Protection of Xiamen, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
2
|
Vasudevan D, Gajendhran B, Swaminathan K, Velmurugan G. Host-microbiota interplay in arsenic metabolism: Implications on host glucose homeostasis. Chem Biol Interact 2025; 406:111354. [PMID: 39674445 DOI: 10.1016/j.cbi.2024.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Arsenic (As), a naturally occurring element with unique properties, has been recognized as the largest mass poisoning in the world by the World Health Organization (WHO). Approximately 200 million people worldwide are exposed to toxic levels of arsenic due to natural and anthropogenic activities. This widespread exposure necessitates a deeper understanding of microbe-arsenic interactions and their potential influence on host exposure and health risks. It is a major causative factor for metabolic diseases, including diabetes. Arsenic exposure has been linked to dysfunction in various cell types and tissues, notably affecting pancreatic islet cells. Numerous mechanisms have been identified to be responsible for arsenic exposure under both in vitro and in vivo conditions. These mechanisms contribute to the regulation of processes underlying diabetes etiology, such as glucose-stimulated insulin secretion from pancreatic beta cells. Unlike other toxic elements, arsenic undergoes metabolism by living organisms, including microbes, plants, and animals. Other toxic elements like Lead (Pb) and mercury (Hg) are generally not metabolized in the same way as Arsenic in microbes, plants and animals. In this review, we strive to initiate a dialogue by reviewing known aspects of microbe-arsenic interactions and placing it in the context of the potential for influencing host exposure and health risks. This review provides an up-to-date insight into arsenic metabolism by the human body and its associated microbiota, as well as the deciphered molecular pathways linking the different species of arsenic in the etiology of diabetes. Additionally, the future perspectives of mitigation and detoxification of arsenic in translational medicine and limitations in current scenarios are discussed. The comprehensive review presented here underscores the importance of exploring the complex interplay between arsenic metabolism, host-microbiota interactions, and their implications on glucose homeostasis and metabolic diseases. It emphasizes the need for continued research to develop effective strategies for mitigating arsenic-related health risks and fostering better translational medicine approaches.
Collapse
Affiliation(s)
- Dinakaran Vasudevan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641 014, Tamil Nadu, India; Gut Microbiome Division, SKAN Research Trust, Bengaluru, 560 034, Karnataka, India
| | - Buvaneswari Gajendhran
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641 014, Tamil Nadu, India
| | - Krishnan Swaminathan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641 014, Tamil Nadu, India
| | - Ganesan Velmurugan
- Chemomicrobiomics Laboratory, Department of Biochemistry and Microbiology, KMCH Research Foundation, Coimbatore, 641 014, Tamil Nadu, India.
| |
Collapse
|
3
|
Fu K, Sun H, Chen X, Liu L, Cao Y, Zhao J, Li S, Ma W. Computer-aided design and preparation of surface arsenite molecularly imprinted polymers for selective adsorption and highly sensitive detection of As(Ⅲ). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136386. [PMID: 39522207 DOI: 10.1016/j.jhazmat.2024.136386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Arsenite is a hazardous substance in water due to its high toxicity and carcinogenic nature, necessitating effective analysis and remediation methods. This study introduces surface arsenite molecularly imprinted polymers (As(Ⅲ)-MIP@MOF) and an advanced sensing platform using arsenite (H₃AsO₃) as the template. By utilizing computational simulations to optimize the functional monomer MAA and the pre-polymerization ratio, we achieved efficient arsenite removal with high adsorption capacity (328.59 mg g⁻¹) and selectivity. The developed As(Ⅲ)-MIM@MOF/AuNPs/GCE sensor demonstrates a wide detection range (1.0 × 10⁻¹¹ to 3.0 × 10⁻⁵ mol L⁻¹) and a low detection limit (3.0 × 10⁻¹³ mol L⁻¹), enhancing sensitivity through the inclusion of MOF/AuNPs. The specific adsorption mechanism involves electrostatic interactions and coordination with surface-imprinted active sites. This approach, validated in river and tap water, offers a practical solution for arsenic removal and highlights the potential of combining molecular imprinting technology with computational simulations to advance sustainable environmental technologies.
Collapse
Affiliation(s)
- Kaixi Fu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Huizhen Sun
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xiuhua Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, China.
| | - Longsi Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yilin Cao
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Junnan Zhao
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Shaoyuan Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Silicon Metallurgy and Silicon Material Engineering Research Center of Universities in Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Wenhui Ma
- School of Engineering, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Pál L, Lovas S, McKee M, Diószegi J, Kovács N, Szűcs S. Exposure to volatile organic compounds in offices and in residential and educational buildings in the European Union between 2010 and 2023: A systematic review and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173965. [PMID: 38897460 DOI: 10.1016/j.scitotenv.2024.173965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Chronic exposure to indoor volatile organic compounds (VOCs) can result in several adverse effects including cancers. We review reports of levels of VOCs in offices and in residential and educational buildings in the member states of the European Union (EU) published between 2010 and 2023. We use these data to assess the risk to population health by estimating lifetime exposure to indoor VOCs and resulting non-cancer and cancer risks and, from that, the burden of cancer attributable to VOC exposure and associated economic losses. Our systematic review identified 1783 articles, of which 184 were examined in detail, with 58 yielding relevant data. After combining data on VOC concentrations separately for EU countries and building types, non-cancer and cancer risks were assessed in terms of hazard quotient and lifetime excess cancer risk (LECR) using probabilistic Monte Carlo Simulations. The LECR was used to estimate disability adjusted life years (DALYs) from VOC-related cancers and associated costs. We find that the LECR associated with formaldehyde exposure was above the acceptable risk level (ARL) in France and Germany and that of from exposure to benzene was also above the ARL in Spanish females. The sum of DALYs and related costs/1,000,000 population/year from exposure to acetaldehyde, benzene, formaldehyde, tetrachloroethylene, and trichloroethylene were 4.02 and €41,010, respectively, in France, those from exposure to acetaldehyde, benzene, carbon tetrachloride, formaldehyde, and trichloroethylene were 3.91 and €39,590 in Germany, and those from exposure to benzene were 0.1 and €1030 in Spain. Taken as a whole, these findings show that indoor exposure to VOCs remains a public health concern in the EU. Although the EU has set limits for certain VOCs, further measures are needed to restrict the use of these chemicals in consumer products.
Collapse
Affiliation(s)
- László Pál
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Szabolcs Lovas
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Martin McKee
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Judit Diószegi
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Nóra Kovács
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Sándor Szűcs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
5
|
Xie D, Wang P, Chen W, Lin J, Wu M, Wang Y, Xia H, Cheng C, Ye F, Syed BM, Liu Q. Urea cycle promotion via ammonia-upregulated CPS1 is involved in arsenite-induced pulmonary fibrosis through enhancing collagen synthesis. Chem Biol Interact 2024; 396:111029. [PMID: 38703806 DOI: 10.1016/j.cbi.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.
Collapse
Affiliation(s)
- Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Weiyong Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Chauhan PK, Pathak HK, Dubey G, Sharma H, Upadhyay SK. Impact of Bacillus cereus SPB-10 on Growth Promotion of Wheat (Triticum aestivum L.) Under Arsenic-Contaminated Soil. Curr Microbiol 2024; 81:153. [PMID: 38652152 DOI: 10.1007/s00284-024-03673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
This study investigates the impact of bacteria on arsenic reduction in wheat plants, highlighting the potential of microbe-based eco-friendly strategies for plant growth. In the present study, bacterial isolate SPB-10 was survived at high concentration against both form of arsenic (As3+ and As5+). SPB-10 produced 5.2 g/L and 11.3 g/L of exo-polysaccharide at 20 ppm of As3+ and As5+, respectively, whereas qualitative examination revealed the highest siderophores ability. Other PGP attributes such as IAA production were recorded 52.12 mg/L and 95.82 mg/L, phosphate solubilization was 90.23 mg/L and 129 mg/L at 20 ppm of As3+ and As5+, respectively. Significant amount of CAT, APX, and Proline was also observed at 20 ppm of As3+ and As5+ in SPB-10. Isolate SPB-10 was molecularly identified as Bacillus cereus through 16S rRNA sequencing. After 42 days, wheat plants inoculated with SPB-10 had a 25% increase in shoot length and dry weight, and 26% rise in chlorophyll-a pigment under As5+ supplemented T4 treatment than control. Reducing sugar content was increased by 24% in T6-treated plants compared to control. Additionally, SPB-10 enhanced the content of essential nutrients (NPK), CAT, and APX in plant's-leaf under both As3+ and As5+ stressed conditions after 42 days. The study found that arsenic uptake in plant roots and shoots decreased in SPB-10-inoculated plants, with the maximum reduction observed in As5+ treated plants. Bio-concentration factor-BCF was reduced by 90.89% in SPB-10-inoculated treatment T4 after 42 days. This suggests that Bacillus cereus-SPB-10 may be beneficial for plant growth in arsenic-contaminated soil.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Gopal Dubey
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Hritik Sharma
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| |
Collapse
|
7
|
Liu Q, Liu Y, Zhang J, Guan Y, Zhou Q, Yan Y, Li W, An J, He M. Gut microbiota deficiency aggravates arsenic-induced toxicity by affecting bioaccumulation and biotransformation in C57BL/6J mice. Food Chem Toxicol 2024; 186:114564. [PMID: 38438009 DOI: 10.1016/j.fct.2024.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Li Y, Zhang M, Mi W, Ji L, He Q, Xie S, Xiao C, Bi Y. Spatial distribution of groundwater fluoride and arsenic and its related disease in typical drinking endemic regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167716. [PMID: 37820791 DOI: 10.1016/j.scitotenv.2023.167716] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
c exposure to geogenic fluoride and arsenic iChronic exposure to geogenic fluoride and arsenic in groundwater has a deleterious influence on the health of billions of people globally. The health status of residents impacted by connected diseases is urgently needed. A twelve-year study was carried out to identify the spatial distribution pattern of high fluoride/arsenic groundwater in an arid/semi-arid area and to estimate the population exposed to related disease. A geostatistical interpolation method and a disease inversion model were used. The results indicated that fluoride/arsenic-rich groundwater primarily accumulated in basins of Shanxi Province. Groundwater fluoride exposure provided a health concern to 3.16 million persons (9.08 % of the population), including 2.50 million children at risk of dental caries. Exposure to groundwater arsenic caused a health risk to 4.38 million inhabitants (12.58 % of total), with 1.92 million at risk of lung cancer, 1.87 million at risk of bladder cancer, and 0.29 million at risk of skin cancer, respectively. The pollution and impact of groundwater fluoride and arsenic vary greatly among residents in different environments, and accurate assessment of the affected population is of great significance for residents' health and water quality management. Our research study complements the critical data on the disease risks associated with geogenic-contaminated groundwater and provides scientific basis of water quality management for policy makers.
Collapse
Affiliation(s)
- Yuan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Minghua Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Ji
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Qiusheng He
- Institute of Intelligent Low Carbon and Control Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China; Shanxi Polytechnic College, Taiyuan 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Chen Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|