1
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
2
|
S K, Ravi YK, Kumar G, Kadapakkam Nandabalan Y, J RB. Microalgal biorefineries: Advancement in machine learning tools for sustainable biofuel production and value-added products recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120135. [PMID: 38286068 DOI: 10.1016/j.jenvman.2024.120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/16/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
The microalgae can be converted into biofuels, biochemicals, and bioactive compounds in a biorefinery. Recently, designing and executing more viable and sustainable biofuel production from microalgal biomass is one of the vital challenges in the development of biorefinery. Scalable cultivation of microalgae is mandatory for commercializing and industrializing the biorefinery. The intrinsic complication in cultivation of microalgae is the physiological and operational factors that renders challenging impact to enable a smooth and profitable operation. However, this aim can only be successful via a simulation prospect. Machine learning tools provides advanced approaches for evaluating, predicting, and controlling uncertainties in microalgal biorefinery for sustainable biofuel production. The present review provides a critical evaluation of the most progressing machine learning tools that validate a potential to be employed in microalgal biorefinery. These tools are highly potential for their extensive evaluation on microalgal screening and classification. However, the application of these tools for optimization of microalgal biomass cultivation in industries in order to increase the biomass production, is still in its initial stages. Integrated hybrid machine learning tools can aid the industries to function efficiently with least resources. Some of the challenges, and perspectives of machine learning tools are discussed. Besides, future prospects are also emphasized. Though, most of the research reports on machine learning tools are not appropriate to gather generalized information, standard protocols and strategies must be developed to design generalized machine learning tools. On a whole, this review offers a perspective information about digitalized microalgal exploitation in a microalgal biorefinery.
Collapse
Affiliation(s)
- Kavitha S
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yogalakshmi Kadapakkam Nandabalan
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, Punjab, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhu C, Hu C, Wang J, Chen Y, Zhao Y, Chi Z. A precise microalgae farming for CO 2 sequestration: A critical review and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166013. [PMID: 37541491 DOI: 10.1016/j.scitotenv.2023.166013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Microalgae are great candidates for CO2 sequestration and sustainable production of food, feed, fuels and biochemicals. Light intensity, temperature, carbon supply, and cell physiological state are key factors of photosynthesis, and efficient phototrophic production of microalgal biomass occurs only when all these factors are in their optimal range simultaneously. However, this synergistic state is often not achievable due to the ever-changing environmental factors such as sunlight and temperature, which results in serious waste of sunlight energy and other resources, ultimately leading to high production costs. Most control strategies developed thus far in the bioengineering field actually aim to improve heterotrophic processes, but phototrophic processes face a completely different problem. Hence, an alternative control strategy needs to be developed, and precise microalgal cultivation is a promising strategy in which the production resources are precisely supplied according to the dynamic changes in key factors such as sunlight and temperature. In this work, the development and recent progress of precise microalgal phototrophic cultivation are reviewed. The key environmental and cultivation factors and their dynamic effects on microalgal cultivation are analyzed, including microalgal growth, cultivation costs and energy inputs. Future research for the development of more precise microalgae farming is discussed. This study provides new insight into developing cost-effective and efficient microalgae farming for CO2 sequestration.
Collapse
Affiliation(s)
- Chenba Zhu
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361005, China.
| | - Chen Hu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen 361005, China
| | - Jialin Wang
- Carbon Neutral Innovation Research Center, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen 361005, China
| | - Yimin Chen
- Environmental and Ecological Engineering Technology Center, Industrial Technology Research Institute, Xiamen University, Xiamen 361005, China
| | - Yunpeng Zhao
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China.
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, No.26 Yucai Road, Jiangbei District, Ningbo 315016, China.
| |
Collapse
|
4
|
Oruganti RK, Biji AP, Lanuyanger T, Show PL, Sriariyanun M, Upadhyayula VKK, Gadhamshetty V, Bhattacharyya D. Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162797. [PMID: 36907394 DOI: 10.1016/j.scitotenv.2023.162797] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The increased water scarcity, depletion of freshwater resources, and rising environmental awareness are stressing for the development of sustainable wastewater treatment processes. Microalgae-based wastewater treatment has resulted in a paradigm shift in our approach toward nutrient removal and simultaneous resource recovery from wastewater. Wastewater treatment and the generation of biofuels and bioproducts from microalgae can be coupled to promote the circular economy synergistically. A microalgal biorefinery transforms microalgal biomass into biofuels, bioactive chemicals, and biomaterials. The large-scale cultivation of microalgae is essential for the commercialization and industrialization of microalgae biorefinery. However, the inherent complexity of microalgal cultivation parameters regarding physiological and illumination parameters renders it challenging to facilitate a smooth and cost-effective operation. Artificial intelligence (AI)/machine learning algorithms (MLA) offer innovative strategies for assessing, predicting, and regulating uncertainties in algal wastewater treatment and biorefinery. The current study presents a critical review of the most promising AI/MLAs that demonstrate a potential to be applied in microalgal technologies. The most commonly used MLAs include artificial neural networks, support vector machine, genetic algorithms, decision tree, and random forest algorithms. Recent developments in AI have made it possible to combine cutting-edge techniques from AI research fields with microalgae for accurate analysis of large datasets. MLAs have been extensively studied for their potential in microalgae detection and classification. However, the ML application in microalgal industries, such as optimizing microalgae cultivation for increased biomass productivity, is still in its infancy. Incorporating smart AI/ML-enabled Internet of Things (IoT) based technologies can help the microalgal industries to operate effectively with minimum resources. Future research directions are also highlighted, and some of the challenges and perspectives of AI/ML are outlined. As the world is entering the digitalized industrial era, this review provides an insightful discussion about intelligent microalgal wastewater treatment and biorefinery for researchers in the field of microalgae.
Collapse
Affiliation(s)
- Raj Kumar Oruganti
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Alka Pulimoottil Biji
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Tiamenla Lanuyanger
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Malinee Sriariyanun
- Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, The Sirindhorn Thai-German International Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Thailand
| | | | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, USA; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2D-BEST) Center, South Dakota Mines, Rapid City, SD 57701, USA
| | - Debraj Bhattacharyya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
5
|
Wei S, Li F, Zhu N, Wei X, Wu P, Dang Z. Biomass production of Chlorella pyrenoidosa by filled sphere carrier reactor: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023:129195. [PMID: 37207699 DOI: 10.1016/j.biortech.2023.129195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microalgae-based Carbon Capture, Utilization and Storage is vital for mitigating global climate change. A filled sphere carrier reactor was developed to achieve high biomass production and carbon sequestration rate of Chlorella pyrenoidosa. By introducing air (0.04% CO2) into the reactor, the dry biomass production achieved 8.26 g/L with the optimized parameters of polyester carrier, 80% packing density, 5-fold concentrated nutrient combining 0.2 mol/L phosphate buffer. At simulated flue gas CO2 concentration of 7%, the dry biomass yield and carbon sequestration rate reached up to 9.98 g/L and 18.32 g/L/d in one day, which were as high as 249.5 and 79.65 times comparing with those of suspension culture at day 1, respectively. The mechanism was mainly attributed to the obvious intensification of electron transfer rate and remarkable increase of RuBisCO enzyme activity in the photosynthetic chloroplast matrix. This work provided a novel approach for potential microalgae-based carbon capture and storage.
Collapse
Affiliation(s)
- Sijing Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China
| |
Collapse
|
6
|
Mahata C, Mishra S, Dhar S, Ray S, Mohanty K, Das D. Utilization of dark fermentation effluent for algal cultivation in a modified airlift photobioreactor for biomass and biocrude production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117121. [PMID: 36586369 DOI: 10.1016/j.jenvman.2022.117121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Developing an efficient photobioreactor (PBR) and reducing freshwater dependence are among the significant challenges for generating 3rd generation biomass feedstock. Addressing these, the present study focused on developing a modified airlift (MoAL) PBR. Its performance was further evaluated and compared with the traditional airlift PBR by cultivating microalgae in dark fermentation spent wash. Lower mixing time and higher interfacial mass transfer coefficient was observed in the MoAL PBR having a perforated draft tube. Experimentally, the MoAL exhibited the maximum biomass concentration of 3.18 g L-1, which was 30% higher than that of the conventional airlift PBR. The semi-continuous operation of the MoAL (with water recycling) achieved the maximum biomass productivity of 0.83 g L-1 d-1, two folds superior to that of batch culture. The comprehensive biomass characterization (proximate, ultimate, and thermochemical) further confirmed its potential for bioenergy application. Considering that, hydrothermal liquefaction of the biomass resulted in a maximum biocrude yield of 31% w/w with a higher heating value (HHV) of 36.6 MJ kg-1. In addition, the biocrude comprised 66.6% w/w lighter fraction (<343 °C), including 21.5% w/w of heavy naphtha, 20.5% w/w of kerosene, and 24.6% w/w of diesel. The results can help develop sustainable technology for simultaneous wastewater remediation and biocrude production.
Collapse
Affiliation(s)
- Chandan Mahata
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, 721302, India
| | - Sanjeev Mishra
- Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, 144603, India; School of Energy Science and Engineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Suman Dhar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Subhabrata Ray
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology, Guwahati, 781039, India; Department of Chemical Engineering, Indian Institute of Technology, Guwahati, 781039, India.
| | - Debabrata Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
7
|
Algal-algal bioflocculation enhances the recovery efficiency of Picochlorum sp. QUCCCM130 with low auto-settling capacity. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Thanigaivel S, Rajendran S, Hoang TKA, Ahmad A, Luque R. Photobiological effects of converting biomass into hydrogen - Challenges and prospects. BIORESOURCE TECHNOLOGY 2023; 367:128278. [PMID: 36351535 DOI: 10.1016/j.biortech.2022.128278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In comparison to other methods of producing hydrogen, the production of biohydrogen is significantly less harmful to the surrounding ecosystem when it was produced from the biological origin such as microalgae. It could take the place of conventional fossil fuels while avoiding the emission of greenhouse gases. The substrates such as food, agricultural waste, and industrial waste can be readily utilized after the necessary pretreatment, led to an increase in the yield of hydrogen. Improving the production of biofuels at each stage can have a significant impact on the final results, making this method a potentially useful instrument. As a consequence of this, numerous approaches to pretreat the algal biomass, numerous types of enzymes and catalyst that play a crucial role for hydrogen production, the variables that influence the production of hydrogen, and the potential applications of genetic engineering have all been comprehensively covered in this study.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes J3X 1S1, Canada
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation
| |
Collapse
|
9
|
Stable year-round nutrients removal and recovery from wastewater by technical-scale Algal Turf Scrubber (ATS). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|