1
|
Das BC, Pillai D, V J RK. Sub-chronic nanoplastic toxicity in Etroplus suratensis (Pisces, Cichilidae): Insights into tissue accumulation, stress and metabolic disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 285:107418. [PMID: 40409126 DOI: 10.1016/j.aquatox.2025.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 05/10/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Nanoplastics, as widespread and persistent pollutants, pose a significant threat to the health of organisms. In this study, the impacts of polystyrene nanoplastics on the euryhaline fish, pearl spot (Etroplus suratensis) were investigated. Pearl spot were exposed to 0, 0.2, 2, and 4 mg/L of PS NPs for 14 days and NP accumulation, as well as its impact of accumulation on biochemical and oxidative stress parameters and gene expression were examined. The NP accumulation pattern was different at different exposure concentrations. At 0.2 mg/L of NP exposure concentration, the accumulation order observed was gills ˃ liver ˃ muscle ˃ intestine ˃ brain ˃ spleen. However, at higher exposure concentrations (2 and 4 mg/L), the accumulation order changed to intestine ˃ liver ˃ gills ˃ muscle ˃ spleen ˃ brain. Moreover, the accumulation led to considerable variations in biochemical parameters. Glucose, total cholesterol, SGOT, SGPT, and ALP levels increased, while albumin, total protein, and A/G ratio decreased due to NP exposure. Additionally, the antioxidant levels including SOD, CAT, GPx, and TAC, were remarkably reduced. This could explain the higher levels of MDA and PC, as well as the reduced expression of NRF2 and P53 in the NP-exposed groups, indicating oxidative damage. The significant increases in cortisol levels and the up-regulation of HSP70 indicate that fish experience stress evoked by NP. The NP exposure reduced the IGF1 and CYP1A expression, indicating its potential to impair growth and xenobiotic metabolism. These findings indicate that NPs induce stress, biochemical changes, oxidative damage, inhibited growth, and metabolism disruption in fish. This study is the first to examine the environmentally relevant NPs concentrations on protein damage from oxidative stress, toxic metabolism, and the expression of NRF2, P53, IGF1, and CYP1A in a Cichlid fish.
Collapse
Affiliation(s)
- Bini C Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rejish Kumar V J
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.
| |
Collapse
|
2
|
da Silva Antunes JC, Sobral P, Branco V, Martins M. Uncovering layer by layer the risk of nanoplastics to the environment and human health. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:63-121. [PMID: 39670667 DOI: 10.1080/10937404.2024.2424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nanoplastics (NPs), defined as plastic particles with dimensions less than 100 nm, have emerged as a persistent environmental contaminant with potential risk to both environment and human health. Nanoplastics might translocate across biological barriers and accumulate in vital organs, leading to inflammatory responses, oxidative stress, and genotoxicity, already reported in several organisms. Disruptions to cellular functions, hormonal balance, and immune responses were also linked to NPs exposure in in vitro assays. Further, NPs have been found to adsorb other pollutants, such as persistent organic pollutants (POPs), and leach additives potentially amplifying their advere impacts, increasing the threat to organisms greater than NPs alone. However, NPs toxic effects remain largely unexplored, requiring further research to elucidate potential risks to human health, especially their accumulation, degradation, migration, interactions with the biological systems and long-term consequences of chronic exposure to these compounds. This review provides an overview of the current state-of-art regarding NPs interactions with environmental pollutants and with biological mechanisms and toxicity within cells.
Collapse
Affiliation(s)
- Joana Cepeda da Silva Antunes
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Paula Sobral
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Martins
- MARE-NOVA - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| |
Collapse
|
3
|
Habumugisha T, Zhang Z, Yan C, Ren HY, Rehman A, Uwamahoro S, Zhang X. Size-dependent dynamics and tissue-specific distribution of nano-plastics in Danio rerio: Accumulation and depuration. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136775. [PMID: 39642741 DOI: 10.1016/j.jhazmat.2024.136775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Nano-plastics (NPs), defined as particles smaller than 1 µm, have emerged as a significant environmental contaminant due to their potential ecological impacts. This study explores the size-dependent dynamics and tissue-specific distribution of polystyrene nano-plastics (PS-NPs) in Danio rerio exposed to PS-NPs at an environmentally relevant concentration of 1 μg/mL for 28 days, followed by a 17-day depuration period. PS-NPs of 20, 100, 200, and 500 nm were assessed in the intestine, liver, gills, muscle, and brain using transmission electron microscopy (TEM) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Smaller PS-NPs (20 nm) showed the highest accumulation in the intestine, followed by the liver, and gills, due to their greater surface area and cellular penetration. In contrast, larger PS-NPs (500 nm) exhibited lower accumulation and clearance rates, especially in the brain, suggesting restricted passage through biological barriers. The intestine consistently had the highest concentrations in both accumulation and depuration, while the brain maintained the lowest across all nanoparticle sizes. During depuration, smaller particles cleared more quickly, whereas larger particles persisted. This study highlights the tissue-specific distribution and retention patterns of PS-NPs in D. rerio, providing insights into nanoparticle behavior in aquatic organisms and the need for long-term size-specific environmental risk assessments.
Collapse
Affiliation(s)
- Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Hong-Yun Ren
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Solange Uwamahoro
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
4
|
Beggel S, Kalis EJJ, Geist J. Towards harmonized ecotoxicological effect assessment of micro- and nanoplastics in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125504. [PMID: 39662584 DOI: 10.1016/j.envpol.2024.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanoplastics are globally important environmental pollutants. Although research in this field is continuously improving, there are a number of uncertainties, inconsistencies and methodological challenges in the effect assessment of micro- and nanoparticles in freshwater systems. The current understanding of adverse effects is partly biased by the use of non-relevant particle types, unsuitable test setups and environmentally unrealistic dose metrics, which does not take into account realistic processes in particle uptake and consequent effects. Here we summarize the current state of the art by compiling the most recent research with the aim to highlight research gaps and further necessary steps towards more harmonized testing systems. In particular, ecotoxicological scenarios need to mirror environmentally realistic particle diversity and bioavailability. Harmonized test setups should include different uptake pathways, exposures and comparisons with natural reference particles. Effect assessments need to differentiate direct physical particle effects, such as lesions and toxicity caused by the polymer, from indirect effects, such as alterations of ambient environmental conditions by leaching, change of turbidity, food dilution and organisms' behavior. Implementation of these suggestions can contribute to harmonization and more effective, evidence-based assessments of the ecotoxicological effects of micro- and nanoplastics.
Collapse
Affiliation(s)
- Sebastian Beggel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Erwin J J Kalis
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany.
| |
Collapse
|
5
|
Schirinzi GF, Bucher G, de Passos MSP, Modesto V, Serra MÁ, Gilliland D, Riccardi N, Ponti J. Exploring Nanoplastics Bioaccumulation in Freshwater Organisms: A Study Using Gold-Doped Polymeric Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:116. [PMID: 39852731 PMCID: PMC11767279 DOI: 10.3390/nano15020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
The evaluation of nanoplastics bioaccumulation in living organisms is still considered an emerging challenge, especially as global plastic production continues to grow, posing a significant threat to humans, animals, and the environment. The goal of this work is to advance the development of standardized methods for reliable biomonitoring in the future. It is crucial to employ sensitive techniques that can detect and measure nanoplastics effectively, while ensuring minimal impact on the environment. To understand nanoplastics retention by freshwater organisms, phyto- and zooplankton, and mussels were exposed to gold-doped polymeric nanoparticles synthesized in our laboratory. The results demonstrated that measuring gold content using inductively coupled plasma mass spectrometry (ICP-MS), along with confirmation of its presence through electron microscopy in selected exposed samples provides insight into the accumulation and release of nanoplastics by organisms playing a relevant ecological role at the early levels of aquatic food webs.
Collapse
Affiliation(s)
- Gabriella F. Schirinzi
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.F.S.); (G.B.); (M.S.P.d.P.); (M.-Á.S.); (D.G.)
| | - Guillaume Bucher
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.F.S.); (G.B.); (M.S.P.d.P.); (M.-Á.S.); (D.G.)
| | | | - Vanessa Modesto
- Water Research Institute (IRSA), National Research Council (CNR), 28922 Pallanza, Italy; (V.M.); (N.R.)
| | - Miguel-Ángel Serra
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.F.S.); (G.B.); (M.S.P.d.P.); (M.-Á.S.); (D.G.)
| | - Douglas Gilliland
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.F.S.); (G.B.); (M.S.P.d.P.); (M.-Á.S.); (D.G.)
| | - Nicoletta Riccardi
- Water Research Institute (IRSA), National Research Council (CNR), 28922 Pallanza, Italy; (V.M.); (N.R.)
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.F.S.); (G.B.); (M.S.P.d.P.); (M.-Á.S.); (D.G.)
| |
Collapse
|
6
|
Chen M, Nan J, Breider F. A comparative study on the stability and coagulation removal of aged vs. nonaged nanoplastics in surface water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136490. [PMID: 39547043 DOI: 10.1016/j.jhazmat.2024.136490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Nanoplastics (NPs) are released into surface water due to the widespread use of plastics, undergoing aging from environmental and human factors that alter their physical and chemical characteristics. However, detecting NPs remains challenging, resulting in limited research on their behavior in surface water and their removal efficiency by drinking water treatment. This study utilizes palladium-doped polystyrene nanoplastics (PSNPs) as tracers to enable precise detection and quantification through ICP-MS, thereby overcoming the limitations of conventional detection methods. PSNPs are aged using solar irradiation and ozone to simulate both natural and artificial aging processes, affecting the physical and chemical properties of NPs, which in turn influence their behavior in water treatment systems. Moreover, the study investigates the impact of various coagulation conditions, including different coagulants (AlCl3 and PACl), pH levels (4-9), and humic acid (HA) concentrations (0-10 mg/L), on the of both aged and nonaged NPs. The results demonstrate solar aging triggers significant morphological changes in PSNPs, while ozone aging induces more oxygen functional groups on PSNPs (CIozone=20.99; CIsolar=0.70), increasing sensitivity to HA concentrations and resulting in reduced removal efficiencies for ozone aged PSNPs by AlCl3 (68.68 %) and PACl (74.74 %). In addition, PACl achieves higher PSNPs removal efficiencies (REmin=88.59 %) than that of AlCl3 (REmin=85.57 %) under varied pH levels. This research fills a gap in understanding aged NPs behavior in surface water and offers practical solutions for optimizing coagulation for NPs removal, enhancing our ability to predict NPs environmental fate and manage NPs pollution to ensure drinking water safety.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Ockenden A, Mitrano DM, Kah M, Tremblay LA, Simon KS. Predator traits influence uptake and trophic transfer of nanoplastics in aquatic systems-a mechanistic study. MICROPLASTICS AND NANOPLASTICS 2024; 4:20. [PMID: 39416765 PMCID: PMC11481666 DOI: 10.1186/s43591-024-00096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Predicting the response of aquatic species to environmental contaminants is challenging, in part because of the diverse biological traits within communities that influence their uptake and transfer of contaminants. Nanoplastics are a contaminant of growing concern, and previous research has documented their uptake and transfer in aquatic food webs. Employing an established method of nanoplastic tracking using metal-doped plastics, we studied the influence of biological traits on the uptake of nanoplastic from water and diet in freshwater predators through two exposure assays. We focused on backswimmers (Anisops wakefieldi) and damselfly larvae (Xanthocnemis zealandica) - two freshwater macroinvertebrates with contrasting physiological and morphological traits related to feeding and respiration strategies. Our findings reveal striking differences in nanoplastic transfer dynamics: damselfly larvae accumulated nanoplastics from water and diet and then efficiently eliminated 92% of nanoplastic after five days of depuration. In contrast, backswimmers did not accumulate nanoplastic from either source. Differences in nanoplastic transfer dynamics may be explained by the contrasting physiological and morphological traits of these organisms. Overall, our results highlight the importance and potential of considering biological traits in predicting transfer of nanoplastics through aquatic food webs. Supplementary Information The online version contains supplementary material available at 10.1186/s43591-024-00096-4.
Collapse
Affiliation(s)
- Amy Ockenden
- School of Environment, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland CBD, Auckland, 1010 New Zealand
| | - Denise M. Mitrano
- ETH Zurich, Department of Environmental Systems Science, Universitatstrasse 16, Zurich, 8092 Switzerland
| | - Melanie Kah
- School of Environment, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland CBD, Auckland, 1010 New Zealand
| | - Louis A. Tremblay
- School of Biological Sciences, The University of Auckland, Building 110, 3A Symonds Street, Auckland CBD, Auckland, 1010 New Zealand
- Manaaki Whenua-Landcare Research, Lincoln, 7640 New Zealand
| | - Kevin S. Simon
- School of Environment, The University of Auckland, Science Centre, Building 302, 23 Symonds Street, Auckland CBD, Auckland, 1010 New Zealand
| |
Collapse
|
8
|
Anifowoshe AT, Mukherjee A, Ajisafe VA, Raichur AM, Nongthomba U. Synthesis and characterization of micro-sized polyisobutylene and evaluation of its toxicological effects on the development and homeostasis of zebrafish (Danio rerio). Sci Rep 2024; 14:20300. [PMID: 39217210 PMCID: PMC11365975 DOI: 10.1038/s41598-024-70757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Rampant industrialization has led to widespread reliance on hydrocarbon polymers for various commercial applications. While these synthetic polymers, commonly known as plastics, degrade in slowly in the environments, the toxic effects of their micro-sized particles remain underexplored. In this study, we synthesized polyisobutylene (PIB) microparticles in the lab and evaluated their toxicity and accumulation in a zebrafish model. Pristine and fluorescent PIB-microplastics (MPs), with particle sizes ranging from 2 to 10 μm, were synthesized using the solvent evaporation method. Fourier-transform infrared spectroscopy (FTIR) confirmed the stability of the suspensions. Zebrafish larvae exposed to various concentrations of PIB-MPs exhibited numerous morphological and molecular changes, including delayed hatching, impaired swimming behavior, increased reactive oxygen species levels, altered mRNA levels of genes encoding antioxidant proteins, and reduced survival rates. Dissections revealed PIB-MP accumulation in the guts of larvae and adult fish within 7-21 days, causing damage to the intestinal mucosa. These findings provide insights into how contaminants like PIB can induce pathophysiological defects in aquatic fauna and pose potential health hazards to humans.
Collapse
Affiliation(s)
- Abass Toba Anifowoshe
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
- Cell Biology and Genetics Unit, Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| | - Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Victor A Ajisafe
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
9
|
Xie Y, Irshad S, Jiang Y, Sun Y, Rui Y, Zhang P. Microplastic-mediated environmental behavior of metal contaminants: mechanism and implication. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43524-43539. [PMID: 38904875 DOI: 10.1007/s11356-024-34042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and metals are currently two of the most concerning environmental pollutants due to their persistent nature and potential threats to ecosystems and human health. This review examines the intricate interactions between MPs and metals in diverse environmental compartments, including aquatic, terrestrial, and atmospheric environments by focusing on the complex processes of adsorption and desorption and the mechanisms that govern these interactions. MPs act as carriers and concentrators of metals in aquatic and terrestrial environments, affecting the bioavailability and toxicity of these contaminants to aquatic and terrestrial organisms. This review highlights the existing challenges and constraints associated with current analytical methods, including microscopy, spectroscopy, and isotherm models in studying microplastic-heavy metal interactions. Moreover, we identified the knowledge gaps and future research directions that can enhance our understanding of the dynamic interplay between MPs and metals in various environmental settings.
Collapse
Affiliation(s)
- Yu Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Samina Irshad
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaqi Jiang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yi Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
10
|
Pitt JA, Hahn ME, Aluru N. Implications of exposure route for the bioaccumulation potential of nanopolystyrene particles. CHEMOSPHERE 2024; 351:141133. [PMID: 38199495 DOI: 10.1016/j.chemosphere.2024.141133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microplastics and nanoplastics are found in marine biota across a wide range of trophic levels and environments. While a large portion of the information about plastic exposure comes from gastrointestinal (GI) data, the relevance of particle accumulation from an oral exposure compared with other types of exposure (e.g. dermal, respiratory) is unknown. To address this gap in knowledge, larval zebrafish (7 days post fertilization) were exposed to two different sizes of nanoplastics through either oral gavage or a waterborne exposure. Larvae were tracked for 48 h post exposure (hpe) to assess the migration and elimination of plastics. Larvae eliminated orally gavaged nanoplastics within 48 hpe. Oral gavage showed limited particle movement from the GI tract into other tissues. In contrast, waterborne nanoplastic-exposed larvae displayed notable fluorescence in tissues outside of the GI tract. The 50 nm waterborne-exposed larvae retained the particles past 48 hpe, and showed accumulation with neuromasts. For both sizes of plastic particles, the nanoplastics were eliminated from non-GI tract tissues by 24 hpe. Our results suggest that waterborne exposure leads to greater accumulation of plastic in comparison to oral exposure, suggesting that plastic accumulation in certain tissues is greater via routes of exposure other than oral consumption.
Collapse
Affiliation(s)
- Jordan A Pitt
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Massachusetts Institute of Technology (MIT), Woods Hole Oceanographic Institution (WHOI), Joint Graduate Program in Oceanography and Oceanographic Engineering, USA; Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543 10, USA.
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543 10, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543 10, USA
| |
Collapse
|
11
|
Chen Z, Li Y, Xia H, Wang Y, Pang S, Ma C, Bi L, Wang F, Song M, Jiang G. Chronic exposure to polystyrene microplastics increased the chemosensitivity of normal human liver cells via ABC transporter inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169050. [PMID: 38065500 DOI: 10.1016/j.scitotenv.2023.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Microplastics (MPs) are ubiquitous in environmental compartments and consumer products. Although liver is frequently reported to be a target organ of MP accumulation in mammals, few studies have focused on MP hepatoxicity in humans. In this study, we used normal human liver cells, THLE-2, to assess the acute and chronic toxicity of polystyrene (PS) MPs with sizes of 0.1 and 1 μm. The results showed that after 48 h of exposure, both kinds of PS MPs could enter THLE-2 cells and cause no obviously acute cytotoxicity at <20 μg/mL. In contrast, metabolomic analysis revealed that 90 days of PS MPs exposure at environmentally relevant dose (0.2 μg/mL) could significantly alter the metabolic profiles of the cells, especially the nanosized MPs. KEGG pathway analysis showed that the ATP-binding cassette (ABC) transporter pathway was the most significantly changed pathway. Cell functional tests confirmed that chronic PS MP treatment could inhibit the activity of the ABC efflux transporter and further increase the cytotoxicity of arsenic, indicating that the PS MPs had a chemosensitizing effect. These findings underline the chronic risk of MPs to human liver.
Collapse
Affiliation(s)
- Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghuan Xia
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shaochen Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Liu Y, Li J, Parakhonskiy BV, Hoogenboom R, Skirtach A, De Neve S. Labelling of micro- and nanoplastics for environmental studies: state-of-the-art and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132785. [PMID: 37856963 DOI: 10.1016/j.jhazmat.2023.132785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Studying microplastics and nanoplastics (MNP) in environmental matrices is extremely challenging, and recent developments in labelling techniques may hold much promise to further our knowledge in this field. Here, we reviewed MNP labelling techniques and applications to provide the first systematic and in-depth insight into MNP labelling. We classified all labelling techniques for MNP into four main types (fluorescent, metal, stable isotope and radioisotope) and discussed per type the synthesis methods, detection methods, influencing factors, and the current and future applications and challenges. Direct labelling of environmental MNP with fluorescent dyes and metals enables simple visualisation and selective detection of MNP to improve detection efficiency. However, it is still an open question how to avoid co-labelling of non-plastic (i.e. non-target, matrix) materials. Labelling of MNP that are intentionally added in the environment may allow semi-automatic detection of MNP particles with high accuracy and sensitivity during studies on e.g. transport and degradation. The detection limit of labelled MNP largely depends on particle size and the type of matrix. Fluorescent labelling allows efficient detection of microplastics, whereas metal labelling is preferred for nanoplastics research due to a potentially higher sensitivity. A major challenge for fluorescent and metal labelling is to develop techniques that do not alter the inherent MNP properties or only do so minimally, in particular the surface properties. Stable and radioactive isotope labelling (13C and 14C, but also 15N, 2H) of the polymer itself allows to preserve inherent MNP properties, but have been largely ignored. Overall, labelling of MNP holds great promise for advancing our fundamental understanding of the behaviour of plastics, notably the smallest fractions, in the environment.
Collapse
Affiliation(s)
- Yin Liu
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Jie Li
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent Belgium
| | - Andre Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent Belgium
| | - Stefaan De Neve
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Shi C, Liu Z, Yu B, Zhang Y, Yang H, Han Y, Wang B, Liu Z, Zhang H. Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167404. [PMID: 37769717 DOI: 10.1016/j.scitotenv.2023.167404] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Plastic production on a global scale is instrumental in advancing modern society. However, plastic can be broken down by mechanical and chemical forces of humans and nature, and knowledge of the fate and effects of plastic, especially nanoplastics, in the aquatic environment remains poor. We provide an overview of current knowledge on the environmental occurrence and toxicity of nanoplastics, and suggestions for future research. There are nanoplastics present in seas, rivers, and nature reserves from Asia, Europe, Antarctica, and the Arctic Ocean at levels of 0.3-488 microgram per liter. Once in the aquatic environment, nanoplastics accumulate in plankton, nekton, benthos through ingestion and adherence, with multiple toxic results including inhibited growth, reproductive abnormalities, oxidative stress, and immune system dysfunction. Further investigations should focus on chemical analysis methods for nanoplastics, effect and mechanism of nanoplastics at environmental relevant concentrations in aquatic organisms, as well as the mechanism of the Trojan horse effect of nanoplastics.
Collapse
Affiliation(s)
- Chaoli Shi
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Bingzhi Yu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yinan Zhang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Hongmei Yang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Internation Urbanology Research Center, Hangzhou 311121, China
| |
Collapse
|
14
|
Clark NJ, Fischer AC, Durndell L, Galloway TS, Thompson RC. Translocation of 14C-polystyrene nanoplastics into fish during a very-low concentration dietary exposure. CHEMOSPHERE 2023; 341:140058. [PMID: 37673182 DOI: 10.1016/j.chemosphere.2023.140058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Assessing the dietary accumulation of nanoplastics in animals following very-low exposure concentrations is restricted due to analytical limitations. This study adapted a method for synthesising semi-stable 14C-PS NPs (through styrene polymerisation) in small volumes for deployment in environmental studies. The method was developed with non-labelled material where the final polystyrene product had a primary particle size of 35 ± 8 nm (as measured by transmission electron microscopy). This method was then applied to 14C-labelled styrene to produce radiolabelled polystyrene nanoplastics (14C-PS NPs). The 14C-PS NPs were added (top-dressed) to a commercially available fish feed, with a measured concentration of 27.9 ± 2.1 kBq kg-1 (n = 5), equating to 5.9 μg polystyrene kg-1 feed. Fish (rainbow trout; Oncorhynchus mykiss) were fed this diet at a ration of 2% body weight per day for a period of two weeks. On day 3, 7 and 14, the fish were sampled for the mid intestine, hind intestine, kidney and liver, and measured for tissue radioactivity (determined by liquid scintillation counting). Some background activity was detected in the control samples (e.g., 1-16 and 4-11 Bq g-1 in the hind intestine and liver, respectively) which is due to natural background fluorescence. By the end of the experiment, the hind intestine and liver had significantly elevated radioactivity (25.3 and 15.0 Bq g-1, respectively) compared to the control, indicating the accumulation of nano polystyrene. In the liver, this equated to 1.8 μg polystyrene g-1 dry weight. This study confirms the accumulation of nano particles in vertebrates at low, environmentally relevant concentration, and highlights radiolabelling as a methodological approach suitable for exploring the bioaccumulation of nanoplastics and potential impacts.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Astrid C Fischer
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Lee Durndell
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tamara S Galloway
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| |
Collapse
|
15
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
16
|
Li Y, Du X, Li W, Jiang Q, Ye Y, Yang Y, Liu X, Zhao Y, Che X. Two genes related to apoptosis in the hepatopancreas of juvenile prawn, Macrobrachium nipponense: Molecular characterization and transcriptional response to nanoplastic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162863. [PMID: 36931509 DOI: 10.1016/j.scitotenv.2023.162863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Nanoplastics have been widely found in the global water environment, causing plastic pollution and affecting human beings and numerous organisms. Studies involving freshwater crustacean exposure to nanoplastics, however, are limited. In this study, juvenile prawns (Macrobrachium nipponense) were exposed to 75 nm polystyrene nanoplastics at different concentrations (0, 5, 10, 20, or 40 mg/L) for a 28-d chronic exposure experiment. To study the effects of exposure to nanoplastics on hepatopancreas cell apoptosis, C-Jun N-terminal kinase (JNK) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) genes were selected, and hepatotoxic enzyme activities and Toll pathway- and apoptosis-related gene expression were determined. For the first time, full-length Mn-JNK and Mn-PIK3CA cDNAs were cloned from M. nipponense. Homologous comparisons showed that JNK and PIK3CA had conserved functional sequences. The apoptosis rate in the high-concentration nanoplastic group (40 mg/L) was significantly higher than in the low-concentration nanoplastic (5 mg/L) and control groups (0 mg/L). The alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl transpeptidase (GGT) and xanthine oxidase (XOD) enzyme activities in the hepatopancreas increased with exposure to higher concentrations of nanoplastics. In addition, the levels of apoptosis- and Toll pathway-related gene expression and JNK and PIK3CA gene expression were initially increased, then decreased with exposure to higher concentrations of nanoplastics. This study showed that polystyrene nanoplastics activate toll-related pathways leading to apoptosis and hepatopancreas damage, which provides theoretical support for future aquatic toxicological research.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Wen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
17
|
Silva PV, Silva ARR, Clark NJ, Vassallo J, Baccaro M, Medvešček N, Grgić M, Ferreira A, Busquets-Fité M, Jurkschat K, Papadiamantis AG, Puntes V, Lynch I, Svendsen C, van den Brink NW, Handy RD, van Gestel CAM, Loureiro S. Toxicokinetics and bioaccumulation of silver sulfide nanoparticles in benthic invertebrates in an indoor stream mesocosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162160. [PMID: 36775152 DOI: 10.1016/j.scitotenv.2023.162160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Mesocosms allow the simulation of environmentally relevant conditions and can be used to establish more realistic scenarios of organism exposure to nanoparticles. An indoor mesocosm experiment simulating an aquatic stream ecosystem was conducted to assess the toxicokinetics and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) and AgNO3 in the freshwater invertebrates Girardia tigrina, Physa acuta and Chironomus riparius, and determine if previous single-species tests can predict bioaccumulation in the mesocosm. Water was daily spiked at 10 μg Ag L-1. Ag concentrations in water and sediment reached values of 13.4 μg Ag L-1 and 0.30 μg Ag g-1 in the Ag2S NP exposure, and 12.8 μg Ag L-1 and 0.20 μg Ag g-1 in the AgNO3. Silver was bioaccumulated by the species from both treatments, but with approximately 1.5, 3 and 11 times higher body Ag concentrations in AgNO3 compared to Ag2S NP exposures in snails, chironomids and planarians, respectively. In the Ag2S NP exposures, the observed uptake was probably of the particulate form. This demonstrates that this more environmentally relevant Ag nanoform may be bioavailable for uptake by benthic organisms. Interspecies interactions likely occurred, namely predation (planarians fed on chironomids and snails), which somehow influenced Ag uptake/bioaccumulation, possibly by altering organisms´ foraging behaviour. Higher Ag uptake rate constants were determined for AgNO3 (0.64, 80.4 and 1.12 Lwater g-1organism day-1) than for Ag2S NPs (0.05, 2.65 and 0.32 Lwater g-1organism day-1) for planarians, snails and chironomids, respectively. Biomagnification under environmentally realistic exposure seemed to be low, although it was likely to occur in the food chain P. acuta to G. tigrina exposed to AgNO3. Single-species tests generally could not reliably predict Ag bioaccumulation in the more complex mesocosm scenario. This study provides methodologies/data to better understand exposure, toxicokinetics and bioaccumulation of Ag in complex systems, reinforcing the need to use mesocosm studies to improve the risk assessment of environmental contaminants, specifically NPs, in aquatic environments.
Collapse
Affiliation(s)
- Patrícia V Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana Rita R Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Joanne Vassallo
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Marta Baccaro
- Department of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Neja Medvešček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Magdalena Grgić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Abel Ferreira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Kerstin Jurkschat
- Department of Materials, Oxford University Begbroke Science Park, Begbroke, UK
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, UK
| | - Claus Svendsen
- Centre of Ecology and Hydrology (CEH-NERC), Wallingford, UK
| | | | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Susana Loureiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Hao T, Gao Y, Li ZC, Zhou XX, Yan B. Size-Dependent Uptake and Depuration of Nanoplastics in Tilapia ( Oreochromis niloticus) and Distinct Intestinal Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2804-2812. [PMID: 36749610 DOI: 10.1021/acs.est.2c08059] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs, <1 μm) are of great concern worldwide because of their high potential risk toward organisms in aquatic systems, while very little work has been focused on their tissue-specific toxicokinetics due to the limitations of NP quantification for such a purpose. In this study, NPs with two different sizes (86 and 185 nm) were doped with palladium (Pd) to accurately determine the uptake and depuration kinetics in various tissues (intestine, stomach, liver, gill, and muscle) of tilapia (Oreochromis niloticus) in water, and subsequently, the corresponding toxic effects in the intestine were explored. Our results revealed uptake and depuration constants of 2.70-378 L kg-1 day-1 and 0.138-0.407 day-1 for NPs in tilapia for the first time, and the NPs in tissues were found to be highly dependent on the particle size. The intestine exhibited the greatest relative accumulation of both sizes of NPs; the smaller NPs caused more severe damage than the larger NPs to the intestinal mucosal layer, while the larger NPs induced a greater impact on microbiota composition. The findings of this work explicitly indicate the size-dependent toxicokinetics and intestinal toxicity pathways of NPs, providing new insights into the ecological effects of NPs on aquatic organisms.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River De lta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Shandong University, Qingdao 226237, China
| | - Ze-Chen Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River De lta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiao-Xia Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River De lta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River De lta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|