1
|
Li H, Si D, Wang H, Jiang H, Li P, He Y. Cascading microbial regulation of autochthonous DOM stability in a picocyanobacteria-dominated estuarine reservoir. WATER RESEARCH 2025; 283:123752. [PMID: 40359894 DOI: 10.1016/j.watres.2025.123752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Estuaries serve as vital interfaces in the global carbon cycle by mediating land-ocean exchange and regulating dissolved organic matter (DOM) dynamics. However, the role of microbial communities in regulating autochthonous DOM under phosphorus-limited estuarine conditions remains insufficiently understood. This study explored the biogeochemical parameters, inorganic carbon dynamics, DOM optical properties, and algal-bacterial community composition in a picocyanobacteria-dominated estuarine reservoir subject to seasonal salinity and nutrient fluctuations. Samples were classified into three groups based on DOM compositional features: pristine autochthonous group (PG), high allochthonous group (HG), and balanced group (BG). In BG, picocyanobacteria, particularly Cyanobium PCC-6307, promoted the accumulation of labile tryptophan-like DOM (component C4), which was associated with the lowest autochthonous DOM stability ratios (AuSR). In HG, terrestrial runoff led to a decline in C4 and an increase in DOM stability, reflecting rapid microbial degradation and partial transformation. In BG, colder temperatures and elevated microbial α-diversity facilitated the conversion of DOM into more humified forms, as indicated by higher proportions of humic-like components and AuSR. Key microbial taxa showed substrate-specific metabolic traits related to amino acid, polysaccharide, and one-carbon compound processing. By integrating DOM-defined groupings, fluorescence-derived stability metrics, and microbial marker analysis, this study reveals a sequential cascade of microbial regulation in DOM production, transformation, and stabilization. These findings offer the first detailed evidence of such processes in a phosphorus-limited estuarine system and provide a new framework for linking DOM properties with microbial ecological functions in dynamic aquatic environments.
Collapse
Affiliation(s)
- Huimin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Duanmiao Si
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
| | - Haoyan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Haixia Jiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
2
|
Liu Z, Wang N, Tan Y, Liu Y, Xing C, Xu Z, Luo D, Tang X, Yang Y, Sun X. Seaweed feed enhance the long-term recovery of bacterial community and carbon-nitrogen sequestration in eutrophic coastal wetland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124846. [PMID: 40056579 DOI: 10.1016/j.jenvman.2025.124846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/15/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Seaweed feed offers a promising approach to enhance sustainability in aquaculture. While much research has focused on its effects on aquatic organisms, the impact of seaweed feed residuals on sediment carbon sequestration and bacterial community dynamics remains underexplored. This study aimed to address this gap through a 96-day incubation experiment using sediment from the coastal wetlands of Zhuhai in southern China. We evaluated the effects of seaweed feed derived from the red seaweed Gracilaria lemaneiformis by analyzing temporal changes in sediment physicochemical properties and microbial community dynamics. Our findings reveal that seaweed feed significantly improved sediment organic carbon and nitrogen storage (p < 0.01), enhanced the recovery of dissolved oxygen levels (p < 0.001) and bacterial α-diversity (p < 0.01) compared to normal feed. Additionally, the variability in microbial community structure (p < 0.01) and functional potential (p < 0.05) due to seaweed feed was less pronounced than that caused by normal feed. This reduced variability may result from the role of seaweed feed in stabilizing microbial community assembly, which helps mitigate fluctuations in bacterial structure and function. Overall, this study offers valuable insights for managing aquaculture ponds and coastal wetlands, contributing to the understanding of seaweed carbon sequestration and highlighting the potential of seaweed feed as a significant carbon sink beyond traditional cultivation practices.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nan Wang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, Zhuhai 519082, China
| | - Yongsheng Tan
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, Zhuhai 519082, China
| | - Yifei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, Zhuhai 519082, China
| | - Chengguang Xing
- School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhuo Xu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, Zhuhai 519082, China
| | - Dingyu Luo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, Zhuhai 519082, China
| | - Xikai Tang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, Zhuhai 519082, China
| | - Yufeng Yang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, Zhuhai 519082, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Research Center of Ocean Climate, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, Zhuhai 519082, China.
| |
Collapse
|
3
|
Zhang X, Liu S, Wu Y, Luo H, Ren Y, Liang J, Huang X, Macreadie PI. Nutrient loading accelerates breakdown of refractory dissolved organic carbon in seagrass ecosystem waters. WATER RESEARCH 2025; 273:123017. [PMID: 39721499 DOI: 10.1016/j.watres.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Nutrient loading is a major driver of seagrass ecosystem decline and also threatens the capacity for seagrass ecosystems to act as 'blue carbon' sinks. Dissolved organic carbon (DOC) represents a crucial component of carbon storage in seagrass ecosystems, with refractory DOC (RDOC) playing a key role in long-term (millennial time scale) carbon stocks. The processes governing RDOC are heavily influenced by microbial activity. While it is known that nutrient loading can weaken DOC sequestration potential by changing the DOC composition and transformation, the impact of nutrients on microbial communities that regulate the RDOC pool in seagrass ecosystems remains poorly understood. To address this gap, we conducted a 300-d laboratory incubation experiment to examine the effects of nutrient enrichment on DOC processing and microbial community dynamics. As expected, nutrient addition significantly accelerated the decline in DOC concentration, resulting in the residual DOC exhibiting a higher degree of humification and more depleted δ13C constituents. Concurrent with DOC degradation, microbial community composition shifted from a mix of r- and K-strategists in the early stages to a dominance of K-strategists and fungi in the later stages. Specific bacterial taxa, such as unidentified Rhodospirillales and Oceanococcus, were more prevalent in eutrophicated seagrass waters, while Magnetospira and Nocardioide were more abundant in less eutrophicated waters by the end of the incubation. We speculated that these microbial groups likely adapted to utilise more RDOC, contributing to its decline. The decline in RDOC was approximately 2-times greater in less eutrophicated seagrass waters compared to more eutrophicated waters (26.9 % and 14.5 % decline respectively), which suggests that less eutrophicated seagrass ecosystems are more vulnerable. This study provides evidence that high nutrient loading can enhance RDOC remineralization, ultimately weakening the long-term carbon sequestration potential of seagrass ecosystems.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hongxue Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzheng Ren
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiening Liang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Peter I Macreadie
- Centre for Nature Positive Solutions, Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Hu Y, Jiang K, Xia S, Zhang W, Guo J, Wang H. Amoeba community dynamics and assembly mechanisms in full-scale drinking water distribution networks under various disinfectant regimens. WATER RESEARCH 2025; 271:122861. [PMID: 39615115 DOI: 10.1016/j.watres.2024.122861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/14/2025]
Abstract
Free-living amoebae (FLA) are prevalent in drinking water distribution networks (DWDNs), yet our understanding of FLA community dynamics and assembly mechanisms in DWDNs remains limited. This study characterized the occurrence patterns of amoeba communities and identified key factors influencing their assembly across four full-scale DWDNs in three Chinese cities, each utilizing different disinfectants (chlorine, chloramine, and chlorine dioxide). High-throughput sequencing of full-length 18S rRNA genes revealed highly diverse FLA communities and an array of rare FLA species in DWDNs. Unique FLA community structures and higher gene copy numbers of three amoeba taxa of concern (Vermamoeba vermiformis, Acanthamoeba, and Naegleria fowleri) were observed in the chloraminated DWDN, highlighting the distinct impact of chloramine on shaping the amoeba community. The FLA communities in DWDNs were primarily driven by deterministic processes, with disinfectant and nitrogen compounds (nitrate, nitrite, and ammonia) identified as the main influencing factors. Machine learning models revealed high SHapley Additive exPlanations (SHAP) values of dominant amoeba genera (e.g., Vannella and Vermamoeba), indicating their critical ecological roles in shaping broader bacterial and eukaryotic communities. Correlation analyses between amoeba genera and bacterial taxa revealed that 82 % of the bacterial taxa exhibiting a negative correlation with amoebae were gram-negative, suggesting the preferred predation of amoebae toward gram-negative bacteria. Network analysis revealed the presence of only one to two amoebae in distinct modules, suggesting that individual amoebae might be selective in grazing. These findings provide insight into the amoeba community dynamics, assembly mechanisms and ecological roles of amoebae in drinking water, which can aid in risk assessments and mitigation strategies within DWDNs.
Collapse
Affiliation(s)
- Yuxing Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kaiyang Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Xia M, Li X, Zhang M, Li Y, Wu J. Effect of root exudation on community structure of rhizosphere microorganism of three macrophytes during treating swine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124551. [PMID: 39954503 DOI: 10.1016/j.jenvman.2025.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Macrophytes not only directly absorb nitrogen (N) from wastewater, but also influence N removal processes. They were achieved by microorganisms in rhizosphere through root exudations and oxygen secretion. However, changes of root exudes and rhizosphere microbial community structure in macrophytes in high N wastewater are still unclear. Objectives of this study were to investigate effects of dissolved organic carbon (DOC) and organic acids (OA) on composition and diversity of microbial communities across three macrophytes during treating swine wastewater. Result showed that secretion rates of DOC and total organic acid (TOA) displayed an increasing trend with extended experimental times in Pontederia cordata and Iris pseudacorus rhizosphere, while it presented a decline trend in Canna indica rhizosphere. Preponderant phyla in rhizosphere were Proteobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Genera Geobacter enriched in I. pseudacorus rhizosphere, while unidentified_Cyanobacteria enriched in P. cordata rhizosphere. Diversity and richness of microbial communities in C. indica and P. cordata rhizosphere at different experimental periods showed no significant differences (P > 0.05). However, diversity of microbial community increased in I. pseudacorus rhizosphere. Although interactions among microorganisms reduced, they became more mutualistic after treating swine wastewater. Concentration of NH4+-N and total nitrogen (TN), pH, dissolved oxygen (DO) in swine wastewater, malonic acid and succinic acid released by roots enhanced N cycle functions of microbial community. The results contribute to further comprehension of the mechanism of N removal in rhizosphere during treating swine wastewater.
Collapse
Affiliation(s)
- Menghua Xia
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China.
| | - Miaomiao Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Feng C, Lu J, Liu T, Shi X, Zhao S, Lv C, Shi Y, Zhang Z, Jin Y, Pang J, Sun A. Microbial community dynamics in shallow-water grass-type lakes: Habitat succession of microbial ecological assembly and coexistence mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117819. [PMID: 39908866 DOI: 10.1016/j.ecoenv.2025.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Aggregation and co-occurrence patterns of microbial communities are the key scientific issues in lake ecology. To explore the mechanisms of microbial ecological assembly and community succession in this unique habitat, 16 samples were collected from eight sites in Wuliangsuhai Lake. Second-generation DNA sequencing was applied to reveal the spatial dynamics of the bacterial community structure and distribution across two environmental media in this nutrient-rich shallow grassland lake and to elucidate the characteristics of the co-occurrence network. This study also examined the effects of environmental filtering and biological interactions on the formation and maintenance of the community composition and diversity. The results highlight habitat heterogeneity in microbial community composition, with no discernible latitudinal diversity patterns. The causal analysis identified electrical conductivity, pH, total nitrogen, and phosphorus as the primary factors driving changes in the bacterial community structure in the water and sediment of grass-type lakes, with TN being the key environmental driver. CL500-3 was identified as a pollution-tolerant species in aquatic environments. g__norank_f_Verrucomicrobiaceae was identified as a pollution-tolerant species in sediment environments. The bacterial communities exhibited a significant distance decay pattern, with a higher spatial turnover rate in water than in sediment. Co-occurrence network analysis revealed greater complexity and stability in the sediment bacterial communities, with three potential keystone species, than in water. The neutral and null model results indicated that the water bacterial communities were more susceptible to dispersal limitation, whereas more complex interactions in sediment increased the role of deterministic processes in community construction. This study proposed the division of aquatic plant regions in freshwater lakes and demonstrated the community characteristics of different habitat types, contributing to a comprehensive understanding of shallow-water bacterial diversity and community structure.
Collapse
Affiliation(s)
- Chen Feng
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Tingxi Liu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Chunjian Lv
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yujiao Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Zixuan Zhang
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yuqi Jin
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Jiaqi Pang
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Aojie Sun
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| |
Collapse
|
7
|
Liu Z, Jiang C, Yin Z, Ibrahim IA, Zhang T, Wen J, Zhou L, Jiang G, Li L, Yang Z, Huang Y, Yang Z, Gu Y, Meng D, Yin H. Ecological features of microbial community linked to stochastic and deterministic assembly processes in acid mine drainage. Appl Environ Microbiol 2025; 91:e0102824. [PMID: 39679708 PMCID: PMC11784436 DOI: 10.1128/aem.01028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/09/2024] [Indexed: 12/17/2024] Open
Abstract
Ecological processes greatly shape microbial community assembly, but the driving factors remain unclear. Here, we compiled a metagenomic data set of microbial communities from global acid mine drainage (AMD) and explored the ecological features of microbial community linked to stochastic and deterministic processes from the perspective of species niche position, interaction patterns, gene functions, and viral infection. Our results showed that dispersal limitation (DL) (48.5%~93.5%) dominated the assembly of phylogenetic bin in AMD microbial community, followed by homogeneous selection (HoS) (3.1%~39.2%), heterogeneous selection (HeS) (1.4%~22.2%), and drift (DR) (0.2%~2.7%). The dominant process of dispersal limitation was significantly influenced by niche position in temperature (r = -0.518, P = 0.007) and dissolved oxygen (r = 0.471, P = 0.015). Network stability had a significantly negative correlation with the relative importance of dispersal limitation, while it had a positive correlation with selection processes, implying changes in network properties could be mediated by ecological processes. Furthermore, we found that ecological processes were mostly related to the gene functions of energy production and conversion (C), and amino acid transport and metabolism (E). Meanwhile, our results showed that the number of proviruses and viral genes involved in arsenic (As) resistance is negatively associated with the relative importance of ecological drift in phylogenetic bin assembly, implying viral infection might weaken ecological drift. Taken together, these results highlight that ecological processes are associated with ecological features at multiple levels, providing a novel insight into microbial community assembly in extremely acidic environments. IMPORTANCE Unraveling the forces driving community assemblage is a core issue in microbial ecology, but how ecological constraints impose stochasticity and determinism remains unknown. This study presents a comprehensive investigation to uncover the association of ecological processes with species niche position, interaction patterns, microbial metabolisms, and viral infections, which provides novel insights into community assembly in extreme environments.
Collapse
Affiliation(s)
- Zhenghua Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | | | - Teng Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Lei Zhou
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Guoping Jiang
- Hebei Key Laboratory of Highly Efficient Exploitation and Utilization of Radioactive Mineral Resources, Ganchan, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhendong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Zhaoyue Yang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yabing Gu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
8
|
Shi WX, Guo JJ, Yu XX, Li ZX, Weng BY, Wang DX, Su SH, Sun YF, Tan JF, Xie RH. Diversity and interactions of rhizobacteria determine multinutrient traits in tomato host plants under nitrogen and water disturbances. HORTICULTURE RESEARCH 2025; 12:uhae290. [PMID: 39906166 PMCID: PMC11789527 DOI: 10.1093/hr/uhae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/03/2024] [Indexed: 02/06/2025]
Abstract
Coevolution within the plant holobiont extends the capacity of host plants for nutrient acquisition and stress resistance. However, the role of the rhizospheric microbiota in maintaining multinutrient utilization (i.e. multinutrient traits) in the host remains to be elucidated. Multinutrient cycling index (MNC), analogous to the widely used multifunctionality index, provides a straightforward and interpretable measure of the multinutrient traits in host plants. Using tomato as a model plant, we characterized MNC (based on multiple aboveground nutrient contents) in host plants under different nitrogen and water supply regimes and explored the associations between rhizospheric bacterial community assemblages and host plant multinutrient profiles. Rhizosphere bacterial community diversity, quantitative abundance, predicted function, and key topological features of the co-occurrence network were more sensitive to water supply than to nitrogen supply. A core bacteriome comprising 61 genera, such as Candidatus Koribacter and Streptomyces, persisted across different habitats and served as a key predictor of host plant nutrient uptake. The MNC index increased with greater diversity and higher core taxon abundance in the rhizobacterial community, while decreasing with higher average degree and graph density of rhizobacterial co-occurrence network. Multinutrient absorption by host plants was primarily regulated by community diversity and rhizobacterial network complexity under the interaction of nitrogen and water. The high biodiversity and complex species interactions of the rhizospheric bacteriome play crucial roles in host plant performance. This study supports the development of rhizosphere microbiome engineering, facilitating effective manipulation of the microbiome for enhanced plant benefits, which supports sustainable agricultural practices and plant health.
Collapse
Affiliation(s)
| | | | - Xin-Xuan Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bo-Yang Weng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Dan-Xia Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Shi-Hao Su
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu-Fei Sun
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jin-Fang Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ruo-Han Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
9
|
Ma J, Zhang Z, Sun J, Li T, Fu Z, Hu R, Zhang Y. Effects of Increasing the Nitrogen-Phosphorus Ratio on the Structure and Function of the Soil Microbial Community in the Yellow River Delta. Microorganisms 2024; 12:2419. [PMID: 39770622 PMCID: PMC11677714 DOI: 10.3390/microorganisms12122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Nitrogen (N) deposition from human activities leads to an imbalance in the N and phosphorus (P) ratios of natural ecosystems, which has a series of negative impacts on ecosystems. In this study, we used 16s rRNA sequencing technology to investigate the effect of the N-P supply ratio on the bulk soil (BS) and rhizosphere soil (RS) bacterial community of halophytes in coastal wetlands through manipulated field experiments. The response of soil bacterial communities to changing N and P ratios was influenced by plants. The N:P ratio increased the α-diversity of the RS bacterial community and changed the structure of the BS bacterial community. P addition may increase the threshold, causing decreased α-diversity of the bacterial community. The co-occurrence network of the RS community is more complex, but it is more fragile than that of BS. The co-occurrence network in BS has more modules and fewer network hubs. The increased N:P ratio can increase chemoheterotrophy and denitrification processes in the RS bacterial community, while the N:P ratio can decrease the N-fixing processes and increase the nitration processes. The response of the BS and the RS bacterial community to the N:P ratio differed, as influenced by soil organic carbon (SOC) content in terms of diversity, community composition, mutualistic networks, and functional composition. This study demonstrates that the effect of the N:P ratio on soil bacterial community is different for plant roots and emphasizes the role of plant roots in shaping soil bacterial community during environmental change.
Collapse
Affiliation(s)
- Jinzhao Ma
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Zehao Zhang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
- Institute of Restoration Ecology, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, China
| | - Tian Li
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Zhanyong Fu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Rui Hu
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| | - Yao Zhang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Shandong University of Aeronautics, Binzhou 256603, China; (J.M.); (Z.Z.); (T.L.); (Z.F.); (R.H.); (Y.Z.)
| |
Collapse
|
10
|
Li H, Jiang M, Li P, Xu Z, Jiang P, Chen L, Gin KYH, He Y. Picocyanobacterial-bacterial interactions sustain cyanobacterial blooms in nutrient-limited aquatic environments. ENVIRONMENTAL RESEARCH 2024; 260:119508. [PMID: 38945511 DOI: 10.1016/j.envres.2024.119508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Cyanobacterial blooms (CBs) and concomitant water quality issues in oligotrophic/mesotrophic waters have been recently reported, challenging the conventional understanding that CBs are primarily caused by eutrophication. To elucidate the underlying mechanism of CBs in nutrition-deficient waters, the changes in Chlorophyll a (Chl-a), cyanobacterial-bacterial community composition, and certain microbial function in Qingcaosha Reservoir, the global largest tidal estuary storage reservoir, were analyzed systematically and comprehensively after its pilot run (2011-2019) in this study. Although the water quality was improved and stabilized, more frequent occurrences of bloom level of Chl-a (>20 μg L-1) in warm seasons were observed during recent years. The meteorological changes (CO2, sunshine duration, radiation, precipitation, evaporation, and relative humidity), water quality variations (pH, total organic carbon content, dissolved oxygen, and turbidity), accumulated sediments as an endogenous source, as well as unique estuarine conditions collectively facilitated picocyanobacterial-bacterial coexistence and community functional changes in this reservoir. A stable and tight co-occurrence pattern was established between dominant cyanobacteria (Synechococcus, Cyanobium, Planktothrix, Chroococcidiopsis, and Prochlorothrix) and certain heterotrophic bacteria (Proteobacteria, Actinobacteria, and Bacteroidetes), which contributed to the remineralization of organic matter for cyanobacteria utilization. The relative abundance of chemoorganoheterotrophs and bacteria related to nitrogen transformation (Paracoccus, Rhodoplanes, Nitrosomonas, and Zoogloea) increased, promoting the emergence of CBs in nutrient-limited conditions through enhanced nutrient recycling. In environments with limited nutrients, the interaction between photosynthetic autotrophic microorganisms and heterotrophic bacteria appears to be non-competitive. Instead, they adopt complementary roles within their ecological niche over long-term succession, mutually benefiting from this association. This long-term study confirmed that enhanced nutrient cycling, facilitated by cyanobacterial-bacterial symbiosis following long-term succession, could promote CBs in oligotrophic aquatic environments devoid of external nutrient inputs. This study advances understanding of the mechanisms that trigger and sustain CBs under nutritional constraints, contributing to developing more effective mitigation strategies, ensuring water safety, and maintaining ecological balance.
Collapse
Affiliation(s)
- Huimin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Mengqi Jiang
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zheng Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Peng Jiang
- Department of Industrial Engineering and Management, Sichuan University, Chengdu, 610064, PR China
| | - Lei Chen
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai, 200082, PR China
| | - Karina Yew-Hoong Gin
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore, 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
11
|
Zhang Z, Lu J, Zhang S, Tian Z, Feng C, Liu Y. Analysis of bacterial community structure, functional variation, and assembly mechanisms in multi-media habitats of lakes during the frozen period. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116903. [PMID: 39205354 DOI: 10.1016/j.ecoenv.2024.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Ice, water, and sediment represent three interconnected habitats in lake ecosystems, and bacteria are crucial for maintaining ecosystem equilibrium and elemental cycling across these habitats. However, the differential characteristics and driving mechanisms of bacterial community structures in the ice, water, and sediments of seasonally frozen lakes remain unclear. In this study, high-throughput sequencing technology was used to analyze and compare the structure, function, network characteristics, and assembly mechanisms of bacterial communities in the ice, water, and sediment of Wuliangsuhai, a typical cold region in Inner Mongolia. The results showed that the bacterial communities in the ice and water phases had similar diversity and composition, with Proteobacteria, Bacteroidota, Actinobacteria, Campilobacterota, and Cyanobacteria as dominant phyla. The bacterial communities in sediments displayed significant differences from ice and water, with Chloroflexi, Proteobacteria, Firmicutes, Desulfobacterota, and Acidobacteriota being the dominant phyla. Notably, the bacterial communities in water exhibited higher spatial variability in their distribution than those in ice and sediment. This study also revealed that during the frozen period, the bacterial community species in the ice, water, and sediment media were dominated by cooperative relationships. Community assembly was primarily influenced by stochastic processes, with dispersal limitation and drift identified as the two most significant factors within this process. However, heterogeneous selection also played a significant role in the community composition. Furthermore, functions related to nitrogen, phosphorus, sulfur, carbon, and hydrogen cycling vary among bacterial communities in ice, water, and sediment. These findings elucidate the intrinsic mechanisms driving variability in bacterial community structure and changes in water quality across different media phases (ice, water, and sediment) in cold-zone lakes during the freezing period, offering new insights for water environmental protection and ecological restoration efforts in such environments.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junping Lu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Water Resources Protection and Utilization, Hohhot 010018, China; Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in Inner Mongolia Section of the Yellow River Basin, Hohhot 010018, China.
| | - Sheng Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Water Resources Protection and Utilization, Hohhot 010018, China; Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in Inner Mongolia Section of the Yellow River Basin, Hohhot 010018, China
| | - Zhiqiang Tian
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chen Feng
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yinghui Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
12
|
Zhang H, Jiang N, Zhang S, Zhu X, Wang H, Xiu W, Zhao J, Liu H, Zhang H, Yang D. Soil bacterial community composition is altered more by soil nutrient availability than pH following long-term nutrient addition in a temperate steppe. Front Microbiol 2024; 15:1455891. [PMID: 39345260 PMCID: PMC11427344 DOI: 10.3389/fmicb.2024.1455891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Although aboveground biodiversity has been extensively studied, the impact of nutrient enrichment on soil microbial populations remains unclear. Soil microorganisms serve as important indicators in shaping soil nutrient cycling processes and are typically sensitive to nutrient additions. For this, we employed a factorial combination design to examine the impact of nutrient additions on the composition and function of soil bacteria in a temperate steppe. Nitrogen addition promoted the growth of copiotrophic bacteria (Proteobacteria, Firmicutes, and Bacteroidota) but inhibited the growth of oligotrophic bacteria (Acidobacteria, Chloroflexi, and Verrucomicrobiota). Phosphorus addition alleviated phosphorus deficiency, resulting in a decrease in the abundance of phoD-harboring bacteria (Actinobacteria and Proteobacteria). Significant enhancement of soil bacterial alpha diversity was observed only in treatments with added phosphorus. Changes in NO3 --N, NH4 +-N, available phosphorus, and dissolved organic carbon resulting from nutrient addition may have a greater impact on microbial community structure than changes in soil pH caused by nitrogen addition. Moreover, nutrient addition may indirectly impact microbial ecological function by altering nutrient availability in the soil. In conclusion, our study suggests that soil nutrient availability, particularly available phosphorus, affects soil bacterial communities and potentially regulates the biogeochemical cycles of soil ecosystems.
Collapse
Affiliation(s)
- Hao Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| | - Na Jiang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| | - Siyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoyu Zhu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| | - Hui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| | - Weiming Xiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| | - Jianning Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| | - Hongmei Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| | - Haifang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| | - Dianlin Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affair, Tianjin, China
| |
Collapse
|
13
|
Jiang J, Fang G, Wu C, Wang P, Zhang Y, Zhang C, Wu F, Shan Z, Liu Q, Liu X. The Addition of Glutamine Enhances the Quality of Huangjiu by Modifying the Assembly and Metabolic Activities of Microorganisms during the Fermentation Process. Foods 2024; 13:2833. [PMID: 39272598 PMCID: PMC11395270 DOI: 10.3390/foods13172833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, the effects of adding glutamate (Glu), glutamine (Gln), aspartate (Asp), and asparagine (Asn) on the flavor formation of Huangjiu were investigated, and the effect of Gln concentration on the quality, microbial community structure, and flavor development of Huangjiu was further explored. Varied Gln concentrations influenced yeast growth, sugar utilization, microbial communities, and quality attributes. Additional Gln promoted yeast cell counts and sugar depletion. It increased the complexity of bacterial co-occurrence networks and reduced the impact of stochastic processes on assembly. Correlation analysis linked microorganisms to flavor compounds. Isolation experiments verified the role of Saccharomyces cerevisiae, Aspergillus chevalieri, Bacillus altitudinis, and Lactobacillus coryniformis in flavor production under Gln conditions. This research elucidated the microbiological mechanisms by which amino acid supplementation, especially Gln, enhances Huangjiu quality by modulating microbial metabolic functions and community dynamics during fermentation. This research is significant for guiding the production of Huangjiu and enhancing its quality.
Collapse
Affiliation(s)
- Jiajia Jiang
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Guanyu Fang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Changling Wu
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Peng Wang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Yongzhu Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Cheng Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Fenghua Wu
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Zhichu Shan
- Zhejiang Pagoda Brand Shaoxing Rice Wine Co., Ltd., Shaoxing 312000, China
| | - Qingru Liu
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Xingquan Liu
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
14
|
Chen M, Zheng Y, Zhai X, Ma F, Chen J, Stevens C, Zhang WH, Tian Q. Metal ions steer the duality in microbial community recovery from nitrogen enrichment by shaping functional groups. GLOBAL CHANGE BIOLOGY 2024; 30:e17475. [PMID: 39149922 DOI: 10.1111/gcb.17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Atmospheric nitrogen (N) deposition has been substantially reduced due to declines in the reactive N emission in major regions of the world. Nevertheless, the impact of reduced N deposition on soil microbial communities and the mechanisms by which they are regulated remain largely unknown. Here, we examined the effects of N addition and cessation of N addition on plant and soil microbial communities through a 17-year field experiment in a temperate grassland. We found that extreme N input did not irreversibly disrupt the ecosystem, but ceasing high levels of N addition led to greater resilience in bacterial and fungal communities. Fungi exhibited diminished resilience compared to bacteria due to their heightened reliance on changes in plant communities. Neither bacterial nor fungal diversity fully recovered to their original states. Their sensitivity and resilience were mainly steered by toxic metal ions and soil pH differentially regulating on functional taxa. Specifically, beneficial symbiotic microbes such as N-fixing bacteria and arbuscular mycorrhizal fungi experienced detrimental effects from toxic metal ions and lower pH, hindering their recovery. The bacterial functional groups involved in carbon decomposition, and ericoid mycorrhizal and saprotrophic fungi were positively influenced by soil metals, and demonstrated gradual recovery. These findings could advance our mechanistic understanding of microbial community dynamics under ongoing global changes, thereby informing management strategies to mitigate the adverse effects of N enrichment on soil function.
Collapse
Affiliation(s)
- Mengmeng Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiufeng Zhai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Fangling Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuying Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Cai M, Wang B, Han J, Yang J, Zhang X, Guan X, Jiang H. Microbial difference and its influencing factors in ice-covered lakes on the three poles. ENVIRONMENTAL RESEARCH 2024; 252:118753. [PMID: 38527718 DOI: 10.1016/j.envres.2024.118753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Most lakes in the world are permanently or seasonally covered with ice. However, little is known about the distribution of microbes and their influencing factors in ice-covered lakes worldwide. Here we analyzed the microbial community composition in the waters of 14 ice-covered lakes in the Hoh Xil region of northern Qing-Tibetan Plateau (QTP), and conducted a meta-analysis by integrating published microbial community data of ice-covered lakes in the tripolar regions (the Arctic, Antarctica and QTP). The results showed that there were significant differences in microbial diversity, community composition and distribution patterns in the ice-covered tripolar lakes. Microbial diversity and richness were lower in the ice-covered QTP lakes (including the studied lakes in the Hoh Xil region) than those in the Arctic and Antarctica. In the ice-covered lakes of Hoh Xil, prokaryotes are mainly involved in S-metabolic processes, making them more adaptable to extreme environmental conditions. In contrast, prokaryotes in the ice-covered lakes of the Arctic and Antarctica were predominantly involved in carbon/nitrogen metabolic processes. Deterministic (salinity and nutrients) and stochastic processes (dispersal limitation, homogenizing dispersal and drift) jointly determine the geographical distribution patterns of microorganisms in ice-covered lakes, with stochastic processes dominating. These results expand the understanding of microbial diversity, distribution patterns, and metabolic processes in polar ice-covered lakes.
Collapse
Affiliation(s)
- Min Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jibin Han
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiying Zhang
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
16
|
Jin C, Li Z, Huang M, Ding X, Chen J, Li B. Mechanisms of cadmium release from manganese-rich sediments driven by exogenous DOM and the role of microorganisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116237. [PMID: 38503104 DOI: 10.1016/j.ecoenv.2024.116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Dissolved organic matter (DOM) is a crucial component of natural sediments that alters Cd sequestration. Nevertheless, how different types of DOM fuel Cd mobilization in Mn-rich sediments has not been elucidated. In the present study, four typical DOM, fluvic acid (FA), bovine serum albumin (BSA), sodium alginate (SA), and sodium dodecyl benzene sulfonate (SDBS), were used to amend Cd-contaminated sediment to study their effects on Cd/Mn biotransformation and microbial community response. The results demonstrated that different DOM drive microbial community shifts and enhance microbially mediated Mn oxide (MnO) reduction and Cd release. The amendment of terrestrial- and anthropogenic-derived DOM (FA and SDBS) mainly contributed to enriching Mn-reducing bacteria phylum Proteobacteria, and its abundance increased by 38.16-74.47 % and 56.41-73.98 %, respectively. Meanwhile, microbial-derived DOM (BSA and SA) mainly stimulated the abundances of metal(loid)-resistant bacteria phylum Firmicutes. Accompanied by microbial community structure, diversity, and co-occurrence network shifts, the DOM concentration and oxidation-reduction potential changed, resulting in enhanced Cd mobilization. Importantly, FA stimulated Cd release most remarkably, probably because of the decreased cooperative interactions between bacterial populations, stronger reduction of MnOs, and higher aromaticity and hydrophobicity of the sediment DOM after amendment. This study linked DOM types to functional microbial communities, and explored the potential roles of different DOM types in Cd biotransformation in lake sediments.
Collapse
Affiliation(s)
- Changsheng Jin
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Geography Science, Hunan Normal University, Changsha 410081, PR China; Hunan Provincial Key Laboratory for Eco-environmental Changes and Carbon Sequestration of the Dongting Lake Basin, Hunan Normal University, Changsha 410081, PR China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Bolin Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
17
|
Yang N, Li Y, Lin L, Niu L, Zhang W, Wang L. Transition of organic matter from allochthonous to autochthonous alters benthic nutrient dynamics via microbial food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170186. [PMID: 38278244 DOI: 10.1016/j.scitotenv.2024.170186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
The impoundment of rivers by dams has significantly modified sedimentation patterns and trophic structures. As a result, the algal-derived organic matter (OM), as opposed to terrestrial-derived OM, plays an increasingly important role along the river-reservoir gradient. This study utilized water-sediment microcosms to explore the impacts of allochthonous and autochthonous OM deposition on benthic nutrient dynamics mediated by microbial food webs. Our results revealed that OM addition led to increased fluxes of NH4+ and CO2, with the highest flux induced by cyanobacteria OM, followed by diatom and allochthonous OM. N2 release flux was promoted by allochthonous and diatom OM deposition but inhibited by cyanobacteria OM deposition. The amendment of autochthonous OM increased the activity of dehydrogenase and urease, while allochthonous OM with a higher C/N ratio enhanced the catalytic abilities of polyphenol oxidase and β-glucosidase. Furthermore, OM deposition significantly reduced microbial community richness and diversity, except for eukaryotic richness, and induced pronounced changes in bacterial and eukaryotic community structures. Allochthonous OM deposition stimulated the utilization of bacteria and protozoan on native OM, resulting in a positive priming effect of 26.78 %. In contrast, diatom and cyanobacteria OM additions exerted negative priming effects of -44.53 % and -29.76 %, respectively. Bayesian stable isotope mixing models showed that diatom OM was primarily absorbed by protozoan and metazoan, while cyanobacteria OM was more easily decomposed by bacteria and transferred to higher trophic levels through microbial food webs. In addition, bacterial ammonification accounted for 74.5 % of NH4+ release in the allochthonous OM deposition treatment, whereas eukaryotic excretion contributed separately 83.3 % and 83.1 % to NH4+ release in the diatom and cyanobacteria OM addition treatments. These findings highlight the significance of accounting for the regulatory capacity of OM deposition when studying benthic metabolism within river-reservoir systems.
Collapse
Affiliation(s)
- Nan Yang
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, PR China; College of Geography and Remote Sensing, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, PR China.
| | - Li Lin
- Key Laboratory of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
18
|
Pan Y, Kang P, Zhang Y, Li X. Kalidium cuspidatum colonization changes the structure and function of salt crust microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19764-19778. [PMID: 38363505 DOI: 10.1007/s11356-024-32364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
The changes of soil moisture, salinity, and nutrients by halophyte colonization in high-salinity environment profoundly affect the assembly and structure of microbial communities. However, salt marshes in arid region have received little attention. This study was conducted in Lianhuachi Lake, a typical inland salt marsh wetland in China, to determine the physicochemical characteristics of salt crusts in [Kalidium cuspidatum (Ung.-Sternb.) Grub.] colonization areas and bulk soil, respectively, and to analyze the microbial community structure of salt crusts by high-throughput sequencing. Kalidium cuspidatum colonization significantly decreased total salinity, soil water content, and water-soluble ions of salt crusts and increased total carbon, total nitrogen, and total phosphorus content. At the same time, changes in physicochemical properties caused by Kalidium cuspidatum colonization affect the ecological processes of bacterial, fungal, and archaeal community assemblies in salt crusts. In addition, cross-kingdom network analysis showed that Kalidium cuspidatum colonization increased the complexity and stability of microbial networks in salt crust soils. Functional projections further showed that bacterial diversity had a potential driving effect on the nitrogen cycle function of salt crust. Our study further demonstrated the different ecological strategies of microorganisms for halophyte colonization in extreme environments and contributed to the understanding of restoration and management of salt marsh wetlands in arid region.
Collapse
Affiliation(s)
- Yaqing Pan
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| | - Peng Kang
- School of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Yaqi Zhang
- School of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Xinrong Li
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| |
Collapse
|
19
|
Li L, He XZ, Wang M, Huang L, Wang Z, Zhang X, Hu J, Hou F. Grazing-driven shifts in soil bacterial community structure and function in a typical steppe are mediated by additional N inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169488. [PMID: 38142006 DOI: 10.1016/j.scitotenv.2023.169488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
Herbivore grazing and nitrogen (N) fertilization affect soil microbial diversity and community composition both in direct and indirect pathways (e.g., via alterations in soil microenvironment and plant communities); however, their combination effects are still largely unexplored. We carried out a field study to investigate how soil abiotic properties, plant community composition and functional traits altered soil bacterial community structure and function in response to a long-term herbivore grazing (17-year sheep grazing with four stocking rates) and anthropogenic N inputs (6-year N addition with four levels) experiment. We show that a high stocking rate of 8.7 sheep ha-1 (SR8.7) decreased soil bacterial α- and β-diversity, while α- and β-diversity showed hump-shaped and saddle-shaped responses, respectively, with increasing N addition rate, reaching tipping points at the N application rate of 10 g N m-2 year-1 (N10). The synergistic effects of grazing and N addition induced the highest soil bacterial α-diversity at SR2.7 with N10. The contrasting effects of grazing and N addition induced higher soil bacterial β-diversity at SR8.7 with N20. Plant factors (e.g., aboveground biomass of Stipa bungeana and community-weighted mean carbon [CWM_C]), edaphic factors (e.g., soil moisture, pH, NO3--N, and C:nutrients ratios) and their interactions were the most significant factors affecting the diversity and community composition of bacteria. Our structure equation model (SEM) shows that grazing-induced negative effects on soil pH and plant community composition indirectly increased the β-diversity of soil bacteria, while grazing-induced decreased CWM_C had positive effects on bacterial α-diversity and community structure. However, N addition indirectly increased β-diversity of soil bacteria via changes in soil NO3--N and plant community composition, while N addition had negative impacts on bacterial α-diversity and community structure via variations in CWM_C. The interaction of grazing and N addition increased the complexity and stability of the bacterial network. Based on the KEGG database, grazing and N addition could accelerate the soil functional potential of C and N cycling. Our findings suggest that N application at a rate of <10 g N m-2 year-1 with a stocking rate of <5.3 sheep ha-1 could maintain the development of soil bacteria in supporting the most important ecosystem functions and services. Complex responses of soil microbes to grazing and N addition indicate the need for deeper investigations of the impacts of global change on microbial involvement in biogeochemical cycles.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiong Zhao He
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Mengyuan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ling Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhen Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiumin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Junqi Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
20
|
Feng J, Ma H, Wang C, Gao J, Zhai C, Jiang L, Wan S. Water rather than nitrogen availability predominantly modulates soil microbial beta-diversity and co-occurrence networks in a secondary forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167996. [PMID: 37871812 DOI: 10.1016/j.scitotenv.2023.167996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Atmospheric nitrogen (N) deposition and changing precipitation regimes greatly affect the structure and functions of terrestrial ecosystems. However, their impacts on the diversity and assembly of soil microbial communities including bacteria, fungi and protists, remain largely unclear. As part of a six-year field experiment in a secondary forest in a warm temperate and subtropical climate transitional zone in China, we aimed to investigate the responses of soil microbial communities to N addition, increased and decreased precipitation. The results showed that N addition had no effect on soil microbial α- or β-diversity, but reduced the complexity of microbial network. Neither increased nor decreased precipitation influenced soil microbial α-diversity, but decreased precipitation rather than increased precipitation elevated bacterial and protistan community dissimilarities (β-diversity), which could have been largely attributed to species replacement processes through reducing soil water availability. In addition, decreased precipitation weakened microbial complexity and stability, but enhanced the node proportion of protists in the co-occurrence network. Our observations suggest the asymmetric responses of soil microbial β-diversity to increased and decreased precipitation, and underscore that water rather than N availability, especially drought condition, plays a predominant role in modulating soil microbial β-diversity. Moreover, the findings imply that global change can strengthen the importance of soil protists and then reshape microbial assembly in forests.
Collapse
Affiliation(s)
- Jiayin Feng
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Huixia Ma
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Chunyu Wang
- School of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jingjing Gao
- School of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Changchun Zhai
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shiqiang Wan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
21
|
Huang Z, Pan B, Zhao X, Liu X, Liu X, Zhao G. Hydrological disturbances enhance stochastic assembly processes and decrease network stability of algae communities in a highland floodplain system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166207. [PMID: 37567295 DOI: 10.1016/j.scitotenv.2023.166207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Floodplains are hotspots for biodiversity research and conservation worldwide. Hydrological disturbances can profoundly influence the ecological processes and functions of floodplain systems by altering key biological groups such as algae communities. However, the impacts of flood disturbance on the assembly processes and co-occurrence patterns of algae communities in floodplain ecosystems are still unclear. To ascertain the response patterns of algae communities to flood disturbance, we characterized planktonic and benthic algae communities in 144 water and sediment samples collected from the Tibetan floodplain during non-flood and flood periods based on 23S ribosomal RNA gene sequencing. Results showed that planktonic algae exhibited higher diversity and greater compositional variations compared with benthic communities after flood disturbance. Flooding promoted algae community homogenization at horizontal (rivers vs. oxbow lakes) and vertical levels (water vs. sediment). Stochastic processes governed the assembly of distinct algae communities, and their ecological impacts were enhanced in response to flooding. In the non-flood period, dispersal limitation (81.78 %) was the primary ecological process driving algae community assembly. In the flood period, the relative contribution of ecological drift (72.91 %) to algae community assembly markedly increased, with dispersal limitation (22.61 %) being less important. Flooding reduced the interactions among algae taxa, resulting in lower network complexity and stability. Compared with the planktonic algae subnetworks, the benthic subnetworks showed greater stability in the face of flooding. Findings of this study broaden our understanding of how algae communities respond to hydrological disturbances from an ecological perspective and could be useful for the management of highland floodplain ecosystems.
Collapse
Affiliation(s)
- Zhenyu Huang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xiaohui Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xing Liu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xinyuan Liu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Gengnan Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| |
Collapse
|
22
|
Ren H, Wang G, Ding W, Li H, Shen X, Shen D, Jiang X, Qadeer A. Response of dissolved organic matter (DOM) and microbial community to submerged macrophytes restoration in lakes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116185. [PMID: 37207736 DOI: 10.1016/j.envres.2023.116185] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microorganisms play a crucial role in the biogeochemical processes of Dissolved Organic Matter (DOM), and the properties of DOM also significantly influence changes in microbial community characteristics. This interdependent relationship is vital for the flow of matter and energy within aquatic ecosystems. The presence, growth state, and community characteristics of submerged macrophytes determine the susceptibility of lakes to eutrophication, and restoring a healthy submerged macrophyte community is an effective way to address this issue. However, the transition from eutrophic lakes dominated by planktic algae to medium or low trophic lakes dominated by submerged macrophytes involves significant changes. Changes in aquatic vegetation have greatly affected the source, composition, and bioavailability of DOM. The adsorption and fixation functions of submerged macrophytes determine the migration and storage of DOM and other substances from water to sediment. Submerged macrophytes regulate the characteristics and distribution of microbial communities by controlling the distribution of carbon sources and nutrients in the lake. They further affect the characteristics of the microbial community in the lake environment through their unique epiphytic microorganisms. The unique process of submerged macrophyte recession or restoration can alter the DOM-microbial interaction pattern in lakes through its dual effects on DOM and microbial commu-----nities, ultimately changing the stability of carbon and mineralization pathways in lakes, such as the release of methane and other greenhouse gases. This review provides a fresh perspective on the dynamic changes of DOM and the role of the microbiome in the future of lake ecosystems.
Collapse
Affiliation(s)
- Haoyu Ren
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guoxi Wang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wanchang Ding
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - He Li
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xian Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongbo Shen
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xia Jiang
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Abdul Qadeer
- National Engineering Laboratory of Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
23
|
Lv M, Wang Y, Chen X, Qin W, Shi W, Song W, Chen J, Xu C. The moderate substitution of Astragalus sinicus returning for chemical fertilizer improves the N cycle function of key ecological bacterial clusters in soil. Front Microbiol 2023; 13:1067939. [PMID: 36687600 PMCID: PMC9850295 DOI: 10.3389/fmicb.2022.1067939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Astragalus sinicus (Chinese milk vetch) is a well-established resource of organic fertilizer widely used in paddy soil to partially replace chemical fertilizers. However, the influence of returning A. sinicus to fields on the soil bacterial community remains poorly understood. Here, we used different amounts of A. sinicus partially replacing chemical fertilizers and investigated the changes in soil physicochemical factors and the soil bacterial community structure responses. Returning A. sinicus to the field significantly increased the soil total nitrogen and available phosphorus content (p < 0.05). Weighted gene correlation network analysis (WGCNA) was applied to detect significant associations between the soil microbiome data and physicochemical factors. Two key ecological bacterial clusters (MEturquoise and MEgreen), mainly containing Acidobacteria, Proteobacteria, and Chloroflexi, were significantly correlated with soil nitrogen (N) levels. A. sinicus partially replacing chemical fertilizers reduced the normalized stochasticity ratio (NST) of rare amplicon sequence variants (ASVs), abundant ASVs, MEturquoise, and MEgreen (p < 0.05). Our results further indicated that a moderate amount of A. sinicus returned to the soil effectively mitigated the trend of reduced relative abundance of N fixation function of key ecological clusters caused by chemical fertilizer. However, a large amount of A. sinicus led to a significant increase in relative abundance of denitrification function and a significant decrease in relative abundance of N fixation function of key ecological clusters. This implies that the moderate substitution of A. sinicus returning for chemical fertilizer improves the N cycling function of key ecological bacterial clusters in soil. From the perspective of the bacterial community in paddy soil, this study provides new insight and a reference on how to find a good balance between the amount of A. sinicus returned to the soil and ecological safety.
Collapse
Affiliation(s)
- Minghao Lv
- Institute of Soil and Fertilizer and Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Yongdong Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Xiaofen Chen
- Institute of Soil and Fertilizer and Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Wenjing Qin
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Wencong Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Weifeng Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Jingrui Chen
- Institute of Soil and Fertilizer and Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Changxu Xu
- Institute of Soil and Fertilizer and Resources and Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|