1
|
Heredia Reto P, Castillo Rogel R, Palomino Lucano G, Falen JL, Avellan Laguno RD, Zapata Vidaurre K, Saavedra Febre M, Reyes Calle G, Zingg Rosell J, Lopez Perez J, Morán Rosillo J, Mialhe E, Diringer B. Assessing microbial diversity in open-pit mining: Metabarcoding analysis of soil and pit microbiota across operational and restoration stages. PLoS One 2025; 20:e0320923. [PMID: 40193359 PMCID: PMC11975129 DOI: 10.1371/journal.pone.0320923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Mine closure operations aim to restore the ecosystem to a near-original state. Microorganisms are indispensable for soil equilibrium and restoration. Metabarcoding was employed to characterize the bacterial and fungal composition in pristine soils, stockpiled soils (topsoils), enriched stockpiled soils (technosoils), enriched and revegetated soils (revegetated technosoils), and pit ecosystems in an open pit gold mine. Chao1 analysis revealed highest richness in pristine and topsoils, followed by technosoils (-17.5%) and pits (-63%). Bacterial diversity surpassed fungal diversity (-40%) in soil samples, but fungal OTUs were more abundant in pit samples (+73.4%). The findings identified the dominant microbial communities and conducted a comparative analysis of the shared microbiota. Dominant genera differed notably between pristine, topsoil, and technosoil samples for bacteria and fungi. The ecological indices' results indicated that the pristine soil microbial communities were distinct from those in the topsoils, revealing significant alterations during the stockpiling process. The revegetated technosoil showed more similarity to the pristine and topsoil samples than to the freshly prepared technosoil, suggesting that microbial restoration is an ongoing phenomenon. Microbial restoration analysis revealed that Bacterial communities recover faster than fungal communities highlighting the potential of managing technosoil physicochemical parameters to enhance microbial recovery similar to those found in pristine soils. Runoff water contribute to this rebalancing by transporting microorganisms between ecosystem. All pit samples exhibited significant differences in their microbial composition, with moisture and rock composition representing the primary axes of dissimilarity. The greater community complexity observed in soils is related to the availability of nutrients, physicochemical variations, and the possibility of interaction with other microbes. Pits represent extreme ecosystems that limit the growth of most microorganisms. The presented research provides a scientific basis for future restoration strategies to improve microbial diversity and ecosystem resilience in altered landscapes.
Collapse
Affiliation(s)
| | | | | | | | - Ricardo David Avellan Laguno
- IncaBiotec SAC, Tumbes, Peru
- Xiamen Key Laboratory of Indoor Air and Health, Center for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | | | | | | | | | | | - Eric Mialhe
- IncaBiotec SAC, Tumbes, Peru
- Concepto Azul SA, Estero Salado, Guayaquil, Ecuador
| | - Benoit Diringer
- IncaBiotec SAC, Tumbes, Peru
- Concepto Azul SA, Estero Salado, Guayaquil, Ecuador
| |
Collapse
|
2
|
Aliyu GO, Ezugworie FN, Onwosi CO, Nnamchi CI, Ekwealor CC, Igbokwe VC, Sani RK. Multi-stress adaptive lifestyle of acidophiles enhances their robustness for biotechnological and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176190. [PMID: 39265677 DOI: 10.1016/j.scitotenv.2024.176190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Acidophiles are a group of organisms typically found in highly acidic environments such as acid mine drainage. These organisms have several physiological features that enable them to thrive in highly acidic environments (pH ≤3). Considering that both acid mine drainage and solfatara fields exhibit extreme and dynamic ecological conditions for acidophiles, it is crucial to gain deeper insights into the adaptive mechanisms employed by these unique organisms. The existing literature reveals a notable gap in understanding the multi-stress conditions confronting acidophiles and their corresponding coping mechanisms. Therefore, the current review aims to illuminate the intricacies of the metabolic lifestyles of acidophiles within these demanding habitats, exploring how their energy demands contribute to habitat acidification. In addition, the unique adaptive mechanisms employed by acidophiles were emphasized, especially the pivotal role of monolayer membrane-spanning lipids, and how these organisms effectively respond to a myriad of stresses. Beyond mere survival, understanding the adaptive mechanisms of these unique organisms could further enhance their use in some biotechnological and environmental applications. Lastly, this review explores the strategies used to engineer these organisms to promote their use in industrial applications.
Collapse
Affiliation(s)
- Godwin O Aliyu
- Department of Microbiology, Faculty of Natural Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Flora N Ezugworie
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Sciences, Federal College of Dental Technology and Therapy, Enugu, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
| | - Chukwudi I Nnamchi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chito C Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; INSERM UMR-S 1121 Biomaterial and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
| | - Rajesh K Sani
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, 57701, SD, United States; Data-Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD, United States; Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD, United States; BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
3
|
Li C, Zhong M, Guo E, Xu H, Wen C, Zhu S, Li Q, Zhu D, Luo X. Response of bacterial and fungal communities in natural biofilms to bioavailable heavy metals in a mining-affected river. WATER RESEARCH 2024; 267:122470. [PMID: 39305524 DOI: 10.1016/j.watres.2024.122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 11/28/2024]
Abstract
Biofilms, known as "microbial skin" in rivers, respond to rapid and sensitive environmental changes. However, the ecological response mechanisms of bacterial and fungal communities in river biofilms toward heavy metal pollution (HMP) remains poorly understood. This study focused on the key driving factors of bacterial and fungal community diversity and composition and their ecological response mechanisms within periphytic biofilms of Asia's largest Pb-Zn mining area. The diversity, dominant bacterial taxa, and bacteria structure in biofilms were influenced by biologically available heavy metal (HM) fractions, with Ni-F3 (17.96 %) and Pb-F4 (16.27 %) as the main factors affecting the bacterial community structure. Fungal community structure and α-diversity were more susceptible to physicochemical parameters (pH and nutrient elements). Partial least squares path modeling revealed that environmental factors influencing bacterial and fungal communities in biofilms were ranked as water quality > metal fractions > total metals. Dispersal limitation was the most critical ecological process in bacterial (56.9 %) and fungal (73.4 %) assembly. The proportion of heterogeneous selection by bacteria (39.5 %) was higher than that of fungus (26.2 %), which increased with increasing HMP. Bacterial communities had a higher migration rate (0.48) and ecological drift proportion (3.6 %), making them more prone to escape environmental stress. Fungal communities exhibited more keystone species, larger niche width (23.24 ± 13.04 vs. 9.72 ± 5.48), higher organization level, and a more stable co-occurrence network than bacterial communities, which enabled them to better adapt to high environmental pollution levels. These findings expanded the understanding of the spatiotemporal dynamics of microbial communities within biofilms in HM-polluted watersheds and provided new insights into the ecological responses of microbial communities to HMP.
Collapse
Affiliation(s)
- Chunyan Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Mei Zhong
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Ende Guo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Hansen Xu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Shiqi Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Qi Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Dan Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China
| | - Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China; Asian International Rivers Center, Kunming, Yunnan, 650500, China.
| |
Collapse
|
4
|
Peng B, Wang M, Wu Y, Huang S, Zhang Y, Huang J, Wang Y, Chen C. Anthropogenic activities affect the diverse autotrophic communities of coastal sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124817. [PMID: 39197647 DOI: 10.1016/j.envpol.2024.124817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Coastal sediments are a critical domain for carbon sequestration and are profoundly impacted by human activities. Therefore, it is essential to understand the structure and components of benthic autotrophs that play a crucial role in carbon sequestration processes, as well as the influence of anthropogenic activities on their communities. This study utilized an urban estuary, an industrial sea bay, a maricultural sea region, and two mangrove coastlines within the coastal areas of Guangdong Province, China. The micro-benthos in these environments, including prokaryotes and eukaryotes, were identified through high-throughput sequencing of 16S rRNA and 18S rRNA genes. The findings show that the autotrophic composition was altered by the interactions of anthropogenic heavy metals (Cd and Zn) and micro-eukaryotes (protazoa, metazoa, and parasitic organisms). Industrial pollution reduced the abundance of both prokaryotic and eukaryotic autotrophs. Mangroves induced a substantial transformation in the sediment eukaryotic and prokaryotic composition, increasing the proportion of autotrophs, notably sulfur-oxidizing and iron-oxidizing bacteria and microalgae. This alteration suggests an increase in specific sulfur and iron cycling with simultaneous carbon sequestration within mangrove sediments. These results indicate that anthropogenic activities affect sediment carbon sequestration by altering autotrophic assemblages along coastlines, thereby inducing consequential shifts in overall elemental cycling processes.
Collapse
Affiliation(s)
- Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; Research Center of Low Carbon Economy for Guangzhou Region, Guangzhou, China
| | - Min Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Yanli Wu
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Yun Zhang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jilin Huang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Yuannan Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou, China; Global Studies Center for Urban Environment and Sustainability, Guangzhou, China.
| |
Collapse
|
5
|
Xiao P, Wu Y, Zuo J, Grossart HP, Sun R, Li G, Jiang H, Cheng Y, Wang Z, Geng R, Zhang H, Ma Z, Yan A, Li R. Differential microbiome features in lake-river systems of Taihu basin in response to water flow disturbance. Front Microbiol 2024; 15:1479158. [PMID: 39411429 PMCID: PMC11475019 DOI: 10.3389/fmicb.2024.1479158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction In riverine ecosystems, dynamic interplay between hydrological conditions, such as flow rate, water level, and rainfall, significantly shape the structure and function of bacterial and microeukaryotic communities, with consequences for biogeochemical cycles and ecological stability. Lake Taihu, one of China's largest freshwater lakes, frequently experiences cyanobacterial blooms primarily driven by nutrient over-enrichment and hydrological changes, posing severe threats to water quality, aquatic life, and surrounding human populations. This study explored how varying water flow disturbances influence microbial diversity and community assembly within the interconnected river-lake systems of the East and South of Lake Taihu (ET&ST). The Taipu River in the ET region accounts for nearly one-third of Lake Taihu's outflow, while the ST region includes the Changdougang and Xiaomeigang rivers, which act as inflow rivers. These two rivers not only channel water into Lake Taihu but can also cause the backflow of lake water into the rivers, creating distinct river-lake systems subjected to different intensities of water flow disturbances. Methods Utilizing high-throughput sequencing, we selected 22 sampling sites in the ET and ST interconnected river-lake systems and conducted seasonally assessments of bacterial and microeukaryotic community dynamics. We then compared differences in microbial diversity, community assembly, and co-occurrence networks between the two regions under varying hydrological regimes. Results and discussion This study demonstrated that water flow intensity and temperature disturbances significantly influenced diversity, community structure, community assembly, ecological niches, and coexistence networks of bacterial and eukaryotic microbes. In the ET region, where water flow disturbances were stronger, microbial richness significantly increased, and phylogenetic relationships were closer, yet variations in community structure were greater than in the ST region, which experienced milder water flow disturbances. Additionally, migration and dispersal rates of microbes in the ET region, along with the impact of dispersal limitations, were significantly higher than in the ST region. High flow disturbances notably reduced microbial niche width and overlap, decreasing the complexity and stability of microbial coexistence networks. Moreover, path analysis indicated that microeukaryotic communities exhibited a stronger response to water flow disturbances than bacterial communities. Our findings underscore the critical need to consider the effects of hydrological disturbance on microbial diversity, community assembly, and coexistence networks when developing strategies to manage and protect river-lake ecosystems, particularly in efforts to control cyanobacterial blooms in Lake Taihu.
Collapse
Affiliation(s)
- Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Yao Wu
- CCCC Shanghai Waterway Engineering Design and Consulting Co., Ltd, Shanghai, China
| | - Jun Zuo
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Rui Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Guoyou Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Haoran Jiang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Yao Cheng
- College of Life Sciences and Technology, Harbin Normal University, Harbin, China
| | - Zeshuang Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ruozhen Geng
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment of the People’ s Republic of China, Shanghai, China
| | - He Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ailing Yan
- Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Renhui Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| |
Collapse
|
6
|
Li Q, Lei Y, Li T. DNA metabarcoding reveals ecological patterns and driving mechanisms of archaeal, bacterial, and eukaryotic communities in sediments of the Sansha Yongle Blue Hole. Sci Rep 2024; 14:6745. [PMID: 38509179 PMCID: PMC10954614 DOI: 10.1038/s41598-024-57214-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
The Sansha Yongle Blue Hole (SYBH) is the world's deepest marine blue hole with unique physicochemical characteristics. However, our knowledge of the biodiversity and community structure in SYBH sediments remains limited, as past studies have mostly focused on microbial communities in the water column. Here, we collected sediment samples from the aerobic zone (3.1 to 38.6 m) and the deep anaerobic zone (150 m, 300 m) of the SYBH and extracted DNA to characterize the archaeal, bacterial, and eukaryotic communities inhabiting these sediments. Our results showed that the archaeal and bacterial communities were dominated by Thaumarchaeota and Proteobacteria, respectively. The dominant taxa of eukaryotes in different sites varied greatly, mainly including Phaeophyceae, Annelida, Diatomea and Arthropoda. All three examined domains showed clear vertical distributions and significant differences in community composition between the aerobic and anaerobic zones. Sulfide played a prominent role in structuring the three domains, followed by salinity, nitrous oxide, pH, temperature and dissolved oxygen, all of which were positively correlated with the turnover component, the main contributor to beta diversity. Neutral community model revealed that stochastic processes contributed to more than half of the community variations across the three domains. Co-occurrence network showed an equal number of positive and negative interactions in the archaeal network, while positive interactions accounted for ~ 80% in the bacterial and eukaryotic networks. Our findings reveal the ecological features of prokaryotes and eukaryotes in SYBH sediments and shed new light on community dynamics and survival strategies in the special environment of marine blue holes.
Collapse
Affiliation(s)
- Qingxia Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Center for Marine Ranching Engineering Science Research of Liaoning, Dalian Ocean University, Dalian, 116023, China
| | - Yanli Lei
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiegang Li
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| |
Collapse
|
7
|
Xu L, Wang G, Zhang S, Li T, Xu X, Gong G, Zhou W, Pu Y, Jia Y, Li Y, Long L. Inhibition of high sulfur on functional microorganisms and genes in slightly contaminated soil by cadmium and chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123421. [PMID: 38253166 DOI: 10.1016/j.envpol.2024.123421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
It is generally accepted that sulfur can passivate the bioavailability of heavy metals in soil, but it is not clear whether high sulfur in cadmium (Cd) and chromium (Cr) contaminated soil has negative effect on soil microbial community and ecological function. In this study, total sulfur (TS) inhibited the Chao 1, Shannon, Phylogenetic diversity (Pd) of bacterial and Pd of fungi in slightly contaminated soil by Cd and Cr around pyrite. TS, total potassium, pH, total chromium, total cadmium, total nitrogen, soil organic matter were the predominant factors for soil microbial community; the contribution of TS in shaping bacterial and fungal communities ranked at first and fifth, respectively. Compared with the low sulfur group, the abundance of sulfur sensitive microorganisms Gemmatimonas, Pseudolabrys, MND1, and Schizothecium were decreased by 68.79-97.22% (p < 0.01) at high sulfur one; the carbon fixation, nitrogen cycling, phosphorus cycling and resistance genes abundance were significantly lower (p < 0.01) at the latter. Such variations were strongly and closely correlated to the suppression of energy metabolism (M00009, M00011, M00086) and carbon fixation (M00173, M00376) functional module genes abundance in the high sulfur group. Collectively, high sulfur significantly suppressed the abundances of functional microorganisms and functional genes in slightly contaminated soil with Cd and Cr, possibly through inhibition of energy metabolism and carbon fixation of functional microorganisms. This study provided new insights into the environmental behavior of sulfur in slightly contaminated soil with Cd and Cr.
Collapse
Affiliation(s)
- Longfei Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China.
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, China.
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang, 611130, China
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yun Li
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang, 611130, China
| |
Collapse
|
8
|
Liu J, Pei S, Zheng Q, Li J, Liu X, Ruan Y, Luo B, Ma L, Chen R, Hu W, Niu J, Tian T. Heavy metal contamination impacts the structure and co-occurrence patterns of bacterial communities in agricultural soils. J Basic Microbiol 2024; 64:e2300435. [PMID: 38150647 DOI: 10.1002/jobm.202300435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Heavy metal (HM) contamination caused by mining and smelting activities can be harmful to soil microbiota, which are highly sensitive to HM stress. Here, we explore the effects of HM contamination on the taxonomic composition, predicted function, and co-occurrence patterns of soil bacterial communities in two agricultural fields with contrasting levels of soil HMs (i.e., contaminated and uncontaminated natural areas). Our results indicate that HM contamination does not significantly influence soil bacterial α diversity but changes the bacterial community composition by enriching the phyla Gemmatimonadetes, Planctomycetes, and Parcubacteria and reducing the relative abundance of Actinobacteria. Our results further demonstrate that HM contamination can strengthen the complexity and modularity of the bacterial co-occurrence network but weaken positive interactions between keystone taxa, leading to the gradual disappearance of some taxa that originally played an important role in healthy soil, thereby possibly reducing the resistance of bacterial communities to HM toxicity. The predicted functions of bacterial communities are related to membrane transport, amino acid metabolism, energy metabolism, and carbohydrate metabolism. Among these, functions related to HM detoxification and antioxidation are enriched in uncontaminated soils, while HM contamination enriches functions related to metal resistance. This study demonstrated that microorganisms adapt to the stress of HM pollution by adjusting their composition and enhancing their network complexity and potential ecological functions.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Xingrong Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Bin Luo
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Weigang Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, The People's Republic of China
| |
Collapse
|
9
|
Sun Y, Li H, Zhang J, Wang H, Cui X, Gao X, Qiao W, Yang Y. Assembly mechanisms of microbial communities in plastisphere related to species taxonomic types and habitat niches. MARINE POLLUTION BULLETIN 2024; 198:115894. [PMID: 38101062 DOI: 10.1016/j.marpolbul.2023.115894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
A lot of plastic floats are presented in the kelp cultivation zone, enabling us to effectively evaluate the differences between surface water (SW) and plastic-attached (PA) microbial communities. In this study, we explored the microbial communities (both bacteria and protists) in SW and PA niches during the kelp cultivation activities. Effects of habitat niches on the diversity and composition of microbial communities were found. Beta partitioning and core taxa analyses showed species turnover and local species pool governed the microbial community assembly, and they contributed more to bacteria and protists, respectively. Based on the results of null model, bacterial communities presented a more deterministic and homogeneous assembly compared to protistan communities. Moreover, microbial communities in PA niche had higher species turnover and homogenizing assembly compared to the SW niche. The results of this study supplemented the theory of microbial community assembly and expanded our understanding of protists in plastisphere.
Collapse
Affiliation(s)
- Yi Sun
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Jinyong Zhang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Haining Wang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaoyu Cui
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xin Gao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenwen Qiao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Gu Y, Li Z, Lei P, Wang R, Xu H, Friman VP. Phylogenetic distance-decay patterns are not explained by local community assembly processes in freshwater lake microbial communities. Environ Microbiol 2023; 25:1940-1954. [PMID: 37254577 DOI: 10.1111/1462-2920.16437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
While water and sediment microbial communities exhibit pronounced spatio-temporal patterns in freshwater lakes, the underlying drivers are yet poorly understood. Here, we evaluated the importance of spatial and temporal variation in abiotic environmental factors for bacterial and microeukaryotic community assembly and distance-decay relationships in water and sediment niches in Hongze Lake. By sampling across the whole lake during both Autumn and Spring sampling time points, we show that only bacterial sediment communities were governed by deterministic community assembly processes due to abiotic environmental drivers. Nevertheless, consistent distance-decay relationships were found with both bacterial and microeukaryotic communities, which were relatively stable with both sampling time points. Our results suggest that spatio-temporal variation in environmental factors was important in explaining mainly bacterial community assembly in the sediment, possibly due lesser disturbance. However, clear distance-decay patterns emerged also when the community assembly was stochastic. Together, these results suggest that abiotic environmental factors do not clearly drive the spatial structuring of lake microbial communities, highlighting the need to understand the role of other potential drivers, such as spatial heterogeneity and biotic species interactions.
Collapse
Affiliation(s)
- Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, China
| | - Zhidan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ville-Petri Friman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Biology, University of York, York, UK
| |
Collapse
|
11
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Gao H, Chen J, Wang C, Wang P, Wang R, Hu Y, Pan Y. Diversity and interaction of bacterial and microeukaryotic communities in sediments planted with different submerged macrophytes: Responses to decabromodiphenyl ether. CHEMOSPHERE 2023; 322:138186. [PMID: 36806803 DOI: 10.1016/j.chemosphere.2023.138186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Although various persistent organic pollutants (POPs) can affect microbial communities and functions in aquatic ecosystems, little is known about how bacteria and microeukaryotes respond to the POPs in sediments planted with different submerged macrophytes. Here, a 60-day microcosm experiment was carried out to investigate the changes in the diversity and interaction of bacterial and microeukaryotic communities in sediments collected from Taihu lake, either with decabromodiphenyl ether (BDE-209) own or combined with two common submerged macrophyte species (Vallisneria natans and Hydrilla verticillate). The results showed that BDE-209 significantly decreased the bacterial α-diversity but increased the microeukaryotic one. In sediments planted with submerged macrophytes, the negative effect of BDE-209 on bacterial diversity was weakened, and its positive effect on microeukaryotic one was strengthened. Co-occurrence network analysis revealed that the negative relationship was dominant in bacterial and microeukaryotic communities, while the cooperative relationship between microbial species was increased in planted sediments. Among nine keystone species, one belonging to bacterial family Thermoanaerobaculaceae was enriched by BDE-209, and others were inhibited. Notably, such inhibition was weakened, and the stimulation was enhanced in planted sediments. Together, these observations indicate that the responses of bacteria and microeukaryotes to BDE-209 are different, and their communities under BDE-209 contamination are more stable in sediments planted with submerged macrophytes. Moreover, the effects of plant species on the microbial responses to BDE-209 need to be explored by more specific field studies in the future.
Collapse
Affiliation(s)
- Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Rong Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Yu Hu
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Ying Pan
- School of Ecology, Sun Yat-sen University, Shenzhen, 518000, China
| |
Collapse
|
13
|
Li XT, Huang ZS, Huang Y, Jiang Z, Liang ZL, Yin HQ, Zhang GJ, Jia Y, Deng Y, Liu SJ, Jiang CY. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161752. [PMID: 36690115 DOI: 10.1016/j.scitotenv.2023.161752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Monitoring of the microbial community in bioleaching system is essential for control process parameters and enhance the leaching efficiency. Due to the difficulty of sampling, microbial distribution, community succession and bioleaching activity along the vertical depth of bioleaching heaps remain unresolved. This study investigated the geochemical parameters and microbial community structure along a depth profile in a bioleaching heap and leachate. 80 ore samples at different heap depths and 9 leaching solution samples from three bioheaps of Zijin Copper Mine were collected. Microbial composition, mineral types and geochemical parameters of these samples were analyzed by 16S rRNA high-throughput sequencing and a series of chemical measurement technologies. The results revealed that the pH, Cu, Fe and the total sulfur contents were the major factors shaping the composition of the microbial communities in the bioleaching system. The extent of mineral oxidation increased as the sample depth increases, followed by the increasing of sulfur oxidizers. The abundance of sulfur and iron oxidizers including members of Acidithiobacillus, Sulfobacillus and Acidiferrobacter were significantly higher in the leaching heap than in the leaching solution, meanwhile, they showed strong positive interactions with other members within the same genera and iron oxidizer Leptospirillum and Ferroplasma. Besides, Acidithiobacillus negatively interacted with heterotrophs such as Sphingobium, Exiguobacterium, Brevundimonas and so on. On the contrast, members of Leptospirillum and unclassified Archaea were significantly abundant in the leaching solution and revealed strong interactions with members of Thermoplasmatales. The main conclusion of this study, especially the leaching potential of microorganisms prevailing in bioheaps and their relationships with geochemical factors, provides theoretical guidance for future process design such as the control of processing parameters and microbial community in heap leaching.
Collapse
Affiliation(s)
- Xiu-Tong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Sheng Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Zijin Mining Group Company Limited, Shanghang 364200, Fujian, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Qun Yin
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guang-Ji Zhang
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Jia
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Pan X, Yue Z, She Z, He X, Wang S, Chuai X, Wang J. Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province. Microorganisms 2023; 11:microorganisms11040979. [PMID: 37110402 PMCID: PMC10142529 DOI: 10.3390/microorganisms11040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The stratified acidic pit lake formed by the confluence of acid mine drainage has a unique ecological niche and is a model system for extreme microbial studies. Eukaryotes are a component of the AMD community, with the main members including microalgae, fungi, and a small number of protozoa. In this study, we analyzed the structural traits and interactions of eukaryotes (primarily fungi and microalgae) in acidic pit lakes subjected to environmental gradients. Based on the findings, microalgae and fungi were found to dominate different water layers. Specifically, Chlorophyta showed dominance in the well-lit aerobic surface layer, whereas Basidiomycota was more abundant in the dark anoxic lower layer. Co-occurrence network analysis showed that reciprocal relationships between fungi and microalgae were prevalent in extremely acidic environments. Highly connected taxa within this network were Chlamydomonadaceae, Sporidiobolaceae, Filobasidiaceae, and unclassified Eukaryotes. Redundancy analysis (RDA) and random forest models revealed that Chlorophyta and Basidiomycota responded strongly to environmental gradients. Further analysis indicated that eukaryotic community structure was mainly determined by nutrient and metal concentrations. This study investigates the potential symbiosis between fungi and microalgae in the acidic pit lake, providing valuable insights for future eukaryotic biodiversity studies on AMD remediation.
Collapse
Affiliation(s)
- Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Xiao He
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Xin Chuai
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| |
Collapse
|