1
|
Ma D, Yi B, Teng W, Ali I, Shao J, Lin Y, Yu J, Tian X, Wang Y, Wang L. Growth, physiological and N, P, K accumulation responses of Erythropalum scandens Bl. Seedlings under different substrates. BMC PLANT BIOLOGY 2024; 24:972. [PMID: 39415146 PMCID: PMC11481793 DOI: 10.1186/s12870-024-05678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Erythropalum scandens Bl. is a medicinal woody vegetable found in southern China and parts of Southeast Asia. Studies have shown improper substrate hindered E. scandens seedling growth, causing water accumulation and nutrient deficiency. In pursuit of an ideal growth medium for E. scandens seedlings during the early stages, this study conducted a pot experiment to identify a mixed substrate with optimal water permeability and fertility. In this study, pure Alfisols soil treatment as the control (CK), and two soilless substrates (peat soil and perlite) were combined with Alfisols soil into different volume ratios, in order to better use soil resources from understory space and balance the texture of mixed substrates. The growth, physiological characteristics and nutrient status of 24-month-old E. scandens seedlings were determined after planting in different mixed ratios. The results showed that as the proportion of peat soil increased in the mix, most indexes exhibited an initial increase followed by a decline, while soluble protein content decreased consistently. Conversely, an increasing perlite ratio resulted in a general decline in most growth and physiological indexes. Root growth, biomass accumulation and chlorophyll content, peaked in the 66.67% Alfisols soil + 33.33% perlite (T4) treatment. Notably, T3 (66.67% Alfisols soil + 33.33% peat soil) showcased the best above-ground growth, while T1 (50.00% Alfisols soil + 50.00% peat soil) excelled in element content accumulation. In conclusion, the cultivation substrate should primarily consist of Alfisols soil, constituting at least 50%. The addition of peat soil enhances above-ground growth and nutrients accumulation, while perlite contributes to robust root development. One third of peat soil and a small amount of perlite can be added to the substrate during E. scandens seedling cultivation, and proper fertilization should also be used in order to increase nutrient accumulation in aboveground and underground parts. This research provides valuable insights into maximizing the potential of E. scandens seedlings through precise cultivation methods.
Collapse
Affiliation(s)
- Daocheng Ma
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Biao Yi
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Weichao Teng
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Izhar Ali
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jiayin Shao
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yongzhi Lin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jianmei Yu
- Nanning Arboretum, Nanning, 530031, Guangxi, China
| | - Xiang Tian
- Nanning Arboretum, Nanning, 530031, Guangxi, China
| | - Yijin Wang
- School of Architecture Engineering, Guangxi University of Nationalities, Nanning, 530006, China
| | - Linghui Wang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Liang X, Zhou W, Yang R, Zhang D, Wang H, Li Q, Qi Z, Li Y, Lin W. Microbial mechanism of biochar addition to reduce N 2O emissions from soilless substrate systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119326. [PMID: 37844399 DOI: 10.1016/j.jenvman.2023.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
The soilless peat-based substrate partially solves the global soil problem in greenhouse vegetable production. However, it still produces serious N2O emissions due to the application of nutrient solutions. The pyrolysis biochar is regarded as an effective measure to reduce soil N2O emissions. However, the effect and mechanism of biochar on N2O emissions from the soilless substrate remain unknown. Therefore, this study set up six treatments by adjusting the ratio of biochar addition of peat-based substrate: 0% (0BC), 2% (2BC), 4% (4BC), 6% (6BC), 8% (8BC) and 10% (10BC) (v/v). The results showed that compared to the control treatment, N2O emissions reduced by 81%, 71%, 51%, 61%, and 75% in the 2BC, 4BC, 6BC, 8BC and 10BC treatments, respectively. In addition, lettuce yield increased by 10% and 7% in the 2BC and 4BC treatments and decreased by 0.5%, 4% and 6% in the 6BC, 8BC and 10BC treatments, respectively. Combining stable isotope technology, qPCR analysis and high-throughput sequencing, five microbial pathways of N2O production, including bacterial and archaea nitrification (BN and AN), denitrification performed by fungi, denitrifier bacteria and nitrifier bacteria (FD, DD and ND), were roughly distinguished. In addition, the extent of N2O reduction was obtained by δ18O vs.δ15NSP map. For all treatments, overall, the DD process (over 50%) was the main process of N2O production and reduction, while ND and AN processes were almost negligible (less 5%). In detail, the decrease of N2O emissions was caused by decreasing the contribution of FD in the 6BC, 8BC and 10BC treatments and reducing the contribution of BN in the 0BC and 2BC treatments. In addition, biochar addition increased the extent of N2O reduction to N2. In summary, the 2% biochar addition presented the greatest extent of N2O reduction to N2 (83%) and the lowest N2O emissions as well as the highest lettuce yields and nitrogen utilization efficiency. Therefore, 2% biochar is deemed the most optimal addition to the peat-based substrate.
Collapse
Affiliation(s)
- Xiaofeng Liang
- College of Mechanical Engineering, Chengdu University, Chengdu, 610106, PR China.
| | - Wanlai Zhou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Rui Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Hong Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Qiaozhen Li
- Environmental Stable Isotope Lab., Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiyong Qi
- College of Mechanical Engineering, Chengdu University, Chengdu, 610106, PR China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Yuzhong Li
- Environmental Stable Isotope Lab., Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Wei Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China; Environmental Stable Isotope Lab., Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
3
|
Xaxiri E, Darivakis E, Karavidas I, Ntatsi G, Savvas D. Comparing the Nutritional Needs of Two Solanaceae and One Cucurbitaceae Species Grown Hydroponically under the Same Cropping Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3642. [PMID: 37896104 PMCID: PMC10609768 DOI: 10.3390/plants12203642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Switching over to closed-loop soilless culture systems, thus preventing pollution of water resources by nitrates and saving water and fertilizers, requires accurate estimations of the mean nutrient-to-water uptake ratios. To contribute to this objective, three fruit vegetable species (tomato, eggplant, cucumber) were grown hydroponically in a floating system under identical cropping conditions to quantify species differences in nutrient uptake. The composition of the nutrient solution used to feed the crops was identical for all species. The total water consumption and the concentrations of most nutrients (K, Ca, Mg, N, P, Fe, Mn, Zn, Cu, B) in the nutrient solution and the plant tissues were measured at crop establishment and at two different crop developmental stages. The obtained data were used to determine the uptake concentrations (UCs) using two mass balance models, one based on nutrient removal from the nutrient solution and a second based on nutrient recovery in the plant tissues. The experiment was conducted in the spring-summer season. The results revealed that the nutrient uptake concentrations were substantially different between species for all nutrients except for N, while there were also significant interactions between the two methods used for their estimation of some nutrients. Thus, the UCs of N, P, Ca, and some micronutrients were significantly higher when its estimation was based on the removal of nutrients from the nutrient solution compared to recovery from plant tissues, presumably because with the first method, losses due to denitrification or precipitation could not be separated from those of plant uptake. The comparison of the three greenhouse vegetables revealed a similar UC for nitrogen, while cucumber generally showed significantly lower UCs for P and for the micronutrients Fe, Zn, and Cu at both cropping stages compared to the two Solanaceae species. The obtained results can be used to precisely adjust the nutrient supply in closed-loop soilless cultivations to the plant uptake thus avoiding both depletion and accumulation of nutrients in the root environment.
Collapse
Affiliation(s)
| | | | | | | | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.X.); (E.D.); (I.K.); (G.N.)
| |
Collapse
|
4
|
Karlowsky S, Buchen-Tschiskale C, Odasso L, Schwarz D, Well R. Sources of nitrous oxide emissions from hydroponic tomato cultivation: Evidence from stable isotope analyses. Front Microbiol 2023; 13:1080847. [PMID: 36687587 PMCID: PMC9845576 DOI: 10.3389/fmicb.2022.1080847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Hydroponic vegetable cultivation is characterized by high intensity and frequent nitrogen fertilizer application, which is related to greenhouse gas emissions, especially in the form of nitrous oxide (N2O). So far, there is little knowledge about the sources of N2O emissions from hydroponic systems, with the few studies indicating that denitrification could play a major role. Methods Here, we use evidence from an experiment with tomato plants (Solanum lycopersicum) grown in a hydroponic greenhouse setup to further shed light into the process of N2O production based on the N2O isotopocule method and the 15N tracing approach. Gas samples from the headspace of rock wool substrate were collected prior to and after 15N labeling at two occasions using the closed chamber method and analyzed by gas chromatography and stable isotope ratio mass spectrometry. Results The isotopocule analyses revealed that either heterotrophic bacterial denitrification (bD) or nitrifier denitrification (nD) was the major source of N2O emissions, when a typical nutrient solution with a low ammonium concentration (1-6 mg L-1) was applied. Furthermore, the isotopic shift in 15N site preference and in δ18O values indicated that approximately 80-90% of the N2O produced were already reduced to N2 by denitrifiers inside the rock wool substrate. Despite higher concentrations of ammonium present during the 15N labeling (30-60 mg L-1), results from the 15N tracing approach showed that N2O mainly originated from bD. Both, 15N label supplied in the form of ammonium and 15N label supplied in the form of nitrate, increased the 15N enrichment of N2O. This pointed to the contribution of other processes than bD. Nitrification activity was indicated by the conversion of small amounts of 15N-labeled ammonium into nitrate. Discussion/Conclusion Comparing the results from N2O isotopocule analyses and the 15N tracing approach, likely a combination of bD, nD, and coupled nitrification and denitrification (cND) was responsible for the vast part of N2O emissions observed in this study. Overall, our findings help to better understand the processes underlying N2O and N2 emissions from hydroponic tomato cultivation, and thereby facilitate the development of targeted N2O mitigation measures.
Collapse
Affiliation(s)
- Stefan Karlowsky
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany,*Correspondence: Stefan Karlowsky, ✉
| | - Caroline Buchen-Tschiskale
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | - Luca Odasso
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany
| | - Dietmar Schwarz
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Großbeeren, Germany,Operation Mercy, Amman, Jordan
| | - Reinhard Well
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| |
Collapse
|