1
|
Lois M, Polo D, Pérez del Molino ML, Coira A, Aguilera A, Romalde JL. Monitoring the Emergence of SARS-CoV-2 VOCs in Wastewater and Clinical Samples-A One-Year Study in Santiago de Compostela (Spain). Viruses 2025; 17:489. [PMID: 40284932 PMCID: PMC12030845 DOI: 10.3390/v17040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Wastewater surveillance has become a valuable tool to monitor the emergence of SARS-CoV-2 variants of concern (VOCs) at the community level. In this study, we aimed to evaluate the presence of Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1617.2), and Omicron (B.1.1.529) VOCs in samples from the inlet of a wastewater treatment plant (WWTP) as well as from two different sewer interceptors (SI-1 and SI-2) from the urban sewage system in Santiago de Compostela (Galicia, NW of Spain) throughout 2021 and January 2022. For this purpose, detection and quantification of the four VOCs was performed using four duplex SARS-CoV-2 allelic discrimination RT-qPCR assays, targeting the S-gene. An N1 RT-qPCR gene assay was used as a reference for the presence of SARS-CoV-2 RNA in wastewater samples. All VOCs were detected in wastewater samples. Alpha, Beta, Delta, and Omicron VOCs were detected in 45.7%, 7.5%, 66.7%, and 72.7% of all samples, respectively. Alpha VOC was dominant during the first part of the study, whereas Delta and Omicron detection peaks were observed in May-June and December 2021, respectively. Some differences were observed among the results obtained for the two city sectors studied, which could be explained by the differences in the characteristics of the population between them. Wastewater-based epidemiology allowed us to track the early circulation and emergence of SARS-CoV-2 variants at a local level, and our results are temporally concordant with clinical data and epidemiological findings reported by the health authorities.
Collapse
Affiliation(s)
- Marta Lois
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| | - David Polo
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| | - María Luisa Pérez del Molino
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Amparo Coira
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Antonio Aguilera
- Servicio de Microbiología, Hospital Clínico University de Santiago, 15706 Santiago de Compostela, Spain; (M.L.P.d.M.); (A.C.); (A.A.)
| | - Jesús L. Romalde
- CRETUS, Departament de Microbiología y Parasitología, CIBUS-Faculty de Biología, University de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (D.P.)
| |
Collapse
|
2
|
Tsiouma GK, Oikonomou AA, Nikitopoulos SN, Stavridopoulos MT. COVID-19-Induced Acute Laryngitis: A Case Series. J Voice 2024:S0892-1997(24)00210-8. [PMID: 39048460 DOI: 10.1016/j.jvoice.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES The objective of this study is to present a novel clinical manifestation of COVID-19 with characteristic endoscopic laryngeal findings. A group of patients who reported similar symptoms, displayed akin laryngoscopic features, and received appropriate treatment is analyzed. Endoscopic images are provided and the pattern of this entity is discussed. STUDY DESIGN This single-center descriptive analysis of a case series was performed in the General Hospital of Volos (Greece), during a 6-month period (from April 2022 to September 2022). Twenty-three patients who suffered from COVID-19 and were simultaneously diagnosed with acute laryngitis were enrolled. METHODS Demographic data, clinical and endoscopic findings, laboratory results, and treatment courses were recorded. Descriptive statistics were performed with the statistical package SPSS (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.). RESULTS The majority of the patients were male and fully vaccinated, as defined by Greek legislation at the time. None of them was a smoker. All patients were infected with Severe Acute Respiratory Syndrome Coronavirus 2 for the first time and presented with acute odynophagia. The characteristic endoscopic finding was an erythematous larynx with white undetachable lesions mainly in the supraglottic area. Pooling of saliva in the pyriform fossae was an independent predicting factor for patients' hospitalization (P < 0.001). None of the patients required intubation or tracheostomy and all responded to the systemic treatment with corticosteroids and antibiotics. CONCLUSIONS COVID-19-induced laryngitis should be considered in any patient with positive COVID-19 who complains of acute odynophagia. Fiberoptic laryngoscopy is necessary to confirm the diagnosis. In our series, timely initiation of treatment minimized the need to secure the airway and ensured a favorable prognosis.
Collapse
Affiliation(s)
- Georgia K Tsiouma
- ENT Department of General Hospital of Volos "Achillopouleio", Volos, Thessaly, Greece.
| | - Anastasia A Oikonomou
- ENT Department of General Hospital of Volos "Achillopouleio", Volos, Thessaly, Greece.
| | | | | |
Collapse
|
3
|
El Mazouri S, Essabbar A, Aanniz T, Eljaoudi R, Belyamani L, Ibrahimi A, Ouadghiri M. Genetic diversity and evolutionary dynamics of the Omicron variant of SARS-CoV-2 in Morocco. Pathog Glob Health 2024; 118:241-252. [PMID: 37635364 PMCID: PMC11221468 DOI: 10.1080/20477724.2023.2250942] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Among the numerous variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that have been reported worldwide, the emergence of the Omicron variant has drastically changed the landscape of the coronavirus disease (COVID-19) pandemic. Here, we analyzed the genetic diversity of Moroccan SARS-CoV-2 genomes with a focus on Omicron variant after one year of its detection in Morocco in order to understand its genomic dynamics, features and its potential introduction sources. From 937 Omicron genomes, we identified a total of 999 non-unique mutations distributed across 92 Omicron lineages, of which 13 were specific to the country. Our findings suggest multiple introductory sources of the Omicron variant to Morocco. In addition, we found that four Omicron clades are more infectious in comparison to other Omicron clades. Remarkably, a clade of Omicron is particularly more transmissible and has become the dominant variant worldwide. Moreover, our assessment of Receptor-Binding Domain (RBD) mutations showed that the Spike K444T and N460K mutations enabled a clade higher ability of immune vaccine escape. In conclusion, our analysis highlights the unique genetic diversity of the Omicron variant in Moroccan SARS-CoV-2 genomes, with multiple introductory sources and the emergence of highly transmissible clades. The distinctiveness of the Moroccan strains compared to global ones underscores the importance of ongoing surveillance and understanding of local genomic dynamics for effective response strategies in the evolving COVID-19 pandemic.
Collapse
Affiliation(s)
- Safae El Mazouri
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Abdelmounim Essabbar
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Tarik Aanniz
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Rachid Eljaoudi
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Lahcen Belyamani
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Emergency Department, Military Hospital Mohammed V, Rabat, Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Mouna Ouadghiri
- Laboratory of Biotechnology, Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| |
Collapse
|
4
|
Adamopoulos PG, Diamantopoulos MA, Boti MA, Zafeiriadou A, Galani A, Kostakis M, Markou A, Sideris DC, Avgeris M, Thomaidis NS, Scorilas A. Spike-Seq: An amplicon-based high-throughput sequencing approach for the sensitive detection and characterization of SARS-CoV-2 genetic variations in environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169747. [PMID: 38159750 DOI: 10.1016/j.scitotenv.2023.169747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Ever since the outbreak of COVID-19 disease in Wuhan, China, different variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been identified. Wastewater-based epidemiology (WBE), an approach that has been successfully applied in numerous case studies worldwide, offers a cost-effective and rapid way for monitoring trends of SARS-Cov-2 in the community level without selection bias. Despite being a gold-standard procedure, WBE is a challenging approach due to the sample instability and the moderate efficiency of SARS-CoV-2 concentration in wastewater. In the present study, we introduce Spike-Seq, a custom amplicon-based approach for the S gene sequencing of SARS-CoV-2 in wastewater samples, which enables not only the accurate identification of the existing Spike-related genetic markers, but also the estimation of their frequency in the investigated samples. The implementation of Spike-Seq involves the combination of nested PCR-based assays that efficiently amplify the entire nucleotide sequence of the S gene and next-generation sequencing, which enables the variant detection and the estimation of their frequency. In the framework of the current work, Spike-Seq was performed to investigate the mutational profile of SARS-CoV-2 in samples from the Wastewater Treatment Plant (WWTP) of Athens, Greece, which originated from multiple timepoints, ranging from March 2021 until July 2022. Our findings demonstrate that Spike-Seq efficiently detected major genetic markers of B.1.1.7 (Alpha), B.1.617.2 (Delta) as well as B.1.1.529 (Omicron) variants in wastewater samples and provided their frequency levels, showing similar variant distributions with the published clinical data from the National Public Health organization. The presented approach can prove to be a useful tool for the detection of SARS-CoV-2 in challenging wastewater samples and the identification of the existing genetic variants of S gene.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Michaela A Boti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Zafeiriadou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece
| | - Diamantis C Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry and Molecular Diagnostics, Second Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Papagoras C, Zioga N, Papadopoulos V, Gerolymatou N, Kalavri E, Bounos C, Simopoulou T, Fragoulis GE, Panopoulos S, Fragiadaki K, Evangelatos G, Bournia VK, Arida A, Karamanakos A, Pappa M, Kravvariti E, Deftereou K, Kougkas N, Zampeli E, Kataxaki E, Melissaropoulos K, Barouta G, Panagiotopoulos A, Koutsianas C, Liossis SN, Georgiou P, Dimitroulas T, Tektonidou MG, Bogdanos DP, Elezoglou A, Voulgari PV, Sfikakis PP, Vassilopoulos D. Omicron variant dominance and anti-SARS-CoV-2 vaccination are key determinants for a milder course of COVID-19 in patients with systemic autoimmune rheumatic diseases. Clin Rheumatol 2023; 42:3375-3385. [PMID: 37731083 PMCID: PMC10640401 DOI: 10.1007/s10067-023-06769-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION This study aimed to determine whether the introduction of anti-SARS-CoV-2 vaccines and the dominance of the omicron variant had a significant impact on the outcome of COVID-19 in patients with systemic autoimmune rheumatic diseases (SAIRDs). METHODS Using data entered to the Greek Rheumatology Society COVID-19 registry, we investigated the incidence of hospitalization and death due to COVID-19, during the successive periods of the pandemic according to the prevalent strain (wild-type, Alpha, Delta, Omicron) in vaccinated and unvaccinated patients. Variables independently associated with hospitalization and death were explored using multivariate regression analyses, while Kaplan-Meier curves were used to depict survival data. RESULTS From August 2020 until June 30, 2022, 456 cases (70.2% females) of COVID-19 with a mean age (± SD) of 51.4 ± 14.0 years were reported. In unvaccinated patients, the proportions of hospitalization and death were 24.5% and 4%, compared to 12.5% and 0.8% in the vaccinated group (p < 0.001 for both comparisons). The rates of hospitalization for the wild-type, Alpha, Delta, and Omicron periods were 24.7%, 31.3%, 25.9%, and 8.1% respectively (p < 0.0001), while the case fatality rates were 2.7%, 4%, 7%, and 0%, respectively (p = 0.001). Using multivariable regression analysis, factors independently associated with hospitalization were infection by a non-Omicron variant, being non-vaccinated, exposure to rituximab, older age, and respiratory and cardiovascular disease. Independent predictors for death were contracting COVID-19 during the Alpha or Delta period, pulmonary disease, and older age, while being vaccinated was protective. CONCLUSIONS In this 2-year analysis, the rates of hospitalization and death among patients with SAIRDs have declined significantly. Vaccination and the dominance of the Omicron variant appear to be the major determinants for this shift. Key points • During the late phase of the pandemic, the proportion of severe COVID-19 cases, defined as requiring hospitalization or resulting in death, in patients with systemic autoimmune rheumatic diseases has declined. • Anti-SARS-CoV-2 vaccination and the dominance of the Omicron strain are the key factors that have independently contributed to this shift.
Collapse
Affiliation(s)
- Charalampos Papagoras
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikoleta Zioga
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Nafsika Gerolymatou
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Eleni Kalavri
- Department of Rheumatology, Asklepieion General Hospital, Voula, Athens, Greece
| | - Christos Bounos
- Department of Rheumatology, Asklepieion General Hospital, Voula, Athens, Greece
| | - Theodora Simopoulou
- Clinic of Rheumatology and Clinical Immunology, University Hospital of Larissa, Larissa, Greece
| | - George E Fragoulis
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos Panopoulos
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Fragiadaki
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Evangelatos
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki-Kalliopi Bournia
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Arida
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Karamanakos
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Pappa
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evrydiki Kravvariti
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleopatra Deftereou
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Kougkas
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Evangelia Kataxaki
- Rheumatology Department, General Hospital Elefsinas Thriaseio, Athens, Greece
| | | | | | - Alexandros Panagiotopoulos
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 114 Vass. Sophias Ave, 115 27, Athens, Greece
| | - Christos Koutsianas
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 114 Vass. Sophias Ave, 115 27, Athens, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | | | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria G Tektonidou
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios P Bogdanos
- Clinic of Rheumatology and Clinical Immunology, University Hospital of Larissa, Larissa, Greece
| | - Antonia Elezoglou
- Department of Rheumatology, Asklepieion General Hospital, Voula, Athens, Greece
| | - Paraskevi V Voulgari
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Petros P Sfikakis
- 1st Department of Propedeutic Internal Medicine, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Vassilopoulos
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 114 Vass. Sophias Ave, 115 27, Athens, Greece.
| |
Collapse
|
6
|
Zhan Q, Solo-Gabriele HM, Sharkey ME, Amirali A, Beaver CC, Boone MM, Comerford S, Cooper D, Cortizas EM, Cosculluela GA, Currall BB, Grills GS, Kobetz E, Kumar N, Laine J, Lamar WE, Lyu J, Mason CE, Reding BD, Roca MA, Schürer SC, Shukla BS, Solle NS, Suarez MM, Stevenson M, Tallon JJ, Thomas C, Vidović D, Williams SL, Yin X, Zarnegarnia Y, Babler KM. Correlative analysis of wastewater trends with clinical cases and hospitalizations through five dominant variant waves of COVID-19. ACS ES&T WATER 2023; 3:2849-2862. [PMID: 38487696 PMCID: PMC10936583 DOI: 10.1021/acsestwater.3c00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Wastewater-based epidemiology (WBE) has been utilized to track community infections of Coronavirus Disease 2019 (COVID-19) by detecting RNA of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), within samples collected from wastewater. The correlations between community infections and wastewater measurements of the RNA can potentially change as SARS-CoV-2 evolves into new variations by mutating. This study analyzed SARS-CoV-2 RNA, and indicators of human waste in wastewater from two sewersheds of different scales (University of Miami (UM) campus and Miami-Dade County Central District wastewater treatment plant (CDWWTP)) during five internally defined COVID-19 variant dominant periods (Initial, Pre-Delta, Delta, Omicron and Post-Omicron wave). SARS-CoV-2 RNA quantities were compared against COVID-19 clinical cases and hospitalizations to evaluate correlations with wastewater SARS-CoV-2 RNA. Although correlations between documented clinical cases and hospitalizations were high, prevalence for a given wastewater SARS-CoV-2 level varied depending upon the variant analyzed. The correlative relationship was significantly steeper (more cases per level found in wastewater) for the Omicron-dominated period. For hospitalization, the relationships were steepest for the Initial wave, followed by the Delta wave with flatter slopes during all other waves. Overall results were interpreted in the context of SARS-CoV-2 virulence and vaccination rates among the community.
Collapse
Affiliation(s)
- Qingyu Zhan
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Helena Maria Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Mark E. Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136 FL USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Cynthia C. Beaver
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Melinda M. Boone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Samuel Comerford
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136 FL USA
| | | | - Elena M. Cortizas
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Gabriella A. Cosculluela
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Benjamin B. Currall
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - George S. Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Erin Kobetz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136 FL USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Naresh Kumar
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL 33136 USA
| | - Walter E. Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL 33136 USA
| | - Jiangnan Lyu
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021 USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian D. Reding
- Environmental Health and Safety, University of Miami, Miami, FL 33136 USA
| | - Matthew A. Roca
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Stephan C. Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL 33136 USA
- Institute for Data Science & Computing, University of Miami, Coral Gables, FL 33146 USA
| | - Bhavarth S. Shukla
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136 FL USA
| | - Natasha Schaefer Solle
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136 FL USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Maritza M. Suarez
- Department of Medicine, University of Miami Miller School of Medicine, Miami, 33136 FL USA
| | - Mario Stevenson
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - John J. Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL 33146 USA
| | - Collette Thomas
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Dušica Vidović
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicines, Miami, FL 33136 USA
| | - Sion L. Williams
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Xue Yin
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Yalda Zarnegarnia
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Kristina Marie Babler
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146 USA
| |
Collapse
|
7
|
Basoulis D, Tsakanikas A, Gkoufa A, Bitsani A, Karamanakos G, Mastrogianni E, Georgakopoulou VE, Makrodimitri S, Voutsinas PM, Lamprou P, Kontos A, Tsiakas S, Gamaletsou MN, Marinaki S, Sipsas NV. Effectiveness of Oral Nirmatrelvir/Ritonavir vs. Intravenous Three-Day Remdesivir in Preventing Progression to Severe COVID-19: A Single-Center, Prospective, Comparative, Real-Life Study. Viruses 2023; 15:1515. [PMID: 37515201 PMCID: PMC10383489 DOI: 10.3390/v15071515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Nirmatrelvir/ritonavir (NMV/r) and three-day course remdesivir (3RDV) have been approved as early treatments for COVID-19 outpatients not requiring supplemental oxygen. Real-life data on the efficacy of antivirals among immunocompromised patients or directly comparing their effectiveness in preventing hospitalization and/or death are scarce. METHODS Prospective, observational study conducted in a tertiary care hospital, from 1 January 2022 until 15 March 2023, during the prevalence of the Omicron variant. Inverse probability of treatment weighting (IPTW) was used to account for differences between treatment groups. RESULTS We included 521, mainly immunocompromised (56%), patients in our analysis; 356 (68.3%) received 3RDV and 165 (31.7%) NMV/r. Overall, 15/521 (2.9%) patients met the primary end-point of hospitalization at 30 days (3RDV arm: 10/356, 2.8% vs. NMV/r arm: 5/165, 3%, p = 1). On IPTW-adjusted univariable analysis, the choice of treatment did not affect outcomes. In multivariable logistic regression analysis, we found that one (OR 0.26, 95%CI 0.07-0.99, p = 0.049) or two (OR 0.06, 95%CI 0.01-0.55, p = 0.014) vaccine booster shots reduced the risk for adverse outcomes. CONCLUSION In our patient population of high-risk, mainly immunocompromised, vaccinated patients during the prevalence of the Omicron variant, NMV/r and 3RDV were equally effective early treatments for the prevention of hospitalization and/or death.
Collapse
Affiliation(s)
- Dimitrios Basoulis
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, 115 27 Athens, Greece
| | | | - Aikaterini Gkoufa
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
| | - Aikaterini Bitsani
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
- Haematology Clinic and Bone Marrow Transplantation Unit, Laiko General Hospital, 115 27 Athens, Greece
| | | | | | - Vasiliki E Georgakopoulou
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, 115 27 Athens, Greece
| | | | | | - Panagiota Lamprou
- Pulmonology Department, Laiko General Hospital, 115 27 Athens, Greece
| | - Athanasios Kontos
- Department of Pathophysiology, Laiko General Hospital, 115 27 Athens, Greece
| | - Stathis Tsiakas
- Department of Nephrology and Renal Transplantation, Laiko General Hospital, 115 27 Athens, Greece
| | | | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Laiko General Hospital, 115 27 Athens, Greece
- Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Nikolaos V Sipsas
- Infectious Diseases Unit, Laiko General Hospital, 115 27 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, 115 27 Athens, Greece
- Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
8
|
Sun L, Wang L, Zhang C, Xiao Y, Zhang L, Zhao Z, Ren L, Peng J. Rapid Detection of Predominant SARS-CoV-2 Variants Using Multiplex High-Resolution Melting Analysis. Microbiol Spectr 2023; 11:e0005523. [PMID: 37191515 PMCID: PMC10269585 DOI: 10.1128/spectrum.00055-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a considerable threat to global public health. This study developed and evaluated a rapid, low-cost, expandable, and sequencing-free high-resolution melting (HRM) assay for the direct detection of SARS-CoV-2 variants. A panel of 64 common bacterial and viral pathogens that can cause respiratory tract infections was employed to evaluate our method's specificity. Serial dilutions of viral isolates determined the sensitivity of the method. Finally, the assay's clinical performance was assessed using 324 clinical samples with potential SARS-CoV-2 infection. Multiplex HRM analysis accurately identified SARS-CoV-2 (as confirmed with parallel reverse transcription-quantitative PCR [qRT-PCR] tests), differentiating between mutations at each marker site within approximately 2 h. For each target, the limit of detection (LOD) was lower than 10 copies/reaction (the LOD of N, G142D, R158G, Y505H, V213G, G446S, S413R, F486V, and S704L was 7.38, 9.72, 9.96, 9.96, 9.50, 7.80, 9.33, 8.25, and 8.25 copies/reaction, respectively). No cross-reactivity occurred with organisms of the specificity testing panel. In terms of variant detection, our results had a 97.9% (47/48) rate of agreement with standard Sanger sequencing. The multiplex HRM assay therefore offers a rapid and simple procedure for detecting SARS-CoV-2 variants. IMPORTANCE In the face of the current severe situation of increasing SARS-CoV-2 variants, we developed an upgraded multiplex HRM method for the predominant SARS-CoV-2 variants based on our original research. This method not only could identify the variants but also could be utilized in subsequent detection of novel variants since the assay has great performance in terms of flexibility. In summary, the upgraded multiplex HRM assay is a rapid, reliable, and economical detection method, which could better screen prevalent virus strains, monitor the epidemic situation, and help to develop measures for the prevention and control of SARS-CoV-2.
Collapse
Affiliation(s)
- Liying Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqin Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lulu Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyuan Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Khan M, Li L, Haak L, Payen SH, Carine M, Adhikari K, Uppal T, Hartley PD, Vasquez-Gross H, Petereit J, Verma SC, Pagilla K. Significance of wastewater surveillance in detecting the prevalence of SARS-CoV-2 variants and other respiratory viruses in the community - A multi-site evaluation. One Health 2023; 16:100536. [PMID: 37041760 PMCID: PMC10074727 DOI: 10.1016/j.onehlt.2023.100536] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral genome in wastewater has proven to be useful for tracking the trends of virus prevalence within the community. The surveillance also provides precise and early detection of any new and circulating variants, which aids in response to viral outbreaks. Site-specific monitoring of SARS-CoV-2 variants provides valuable information on the prevalence of new or emerging variants in the community. We sequenced the genomic RNA of viruses present in the wastewater samples and analyzed for the prevalence of SARS-CoV-2 variants as well as other respiratory viruses for a period of one year to account for seasonal variations. The samples were collected from the Reno-Sparks metropolitan area on a weekly basis between November 2021 to November 2022. Samples were analyzed to detect the levels of SARS-CoV-2 genomic copies and variants identification. This study confirmed that wastewater monitoring of SARS-CoV-2 variants can be used for community surveillance and early detection of circulating variants and supports wastewater-based epidemiology (WBE) as a complement to clinical respiratory virus testing as a healthcare response effort. Our study showed the persistence of the SARS-CoV-2 virus throughout the year compared to a seasonal presence of other respiratory viruses, implicating SARS-CoV-2's broad genetic diversity and strength to persist and infect susceptible hosts. Through secondary analysis, we further identified antimicrobial resistance (AMR) genes in the same wastewater samples and found WBE to be a feasible tool for community AMR detection and monitoring.
Collapse
Affiliation(s)
- Majid Khan
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Shannon Harger Payen
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Madeline Carine
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| | - Kabita Adhikari
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Paul D. Hartley
- Nevada Genomics Center, University of Nevada, Reno, NV 89557, USA
| | - Hans Vasquez-Gross
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, USA
| | - Juli Petereit
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno, NV 89557, USA
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, MS258, Reno, NV 89557, USA
| |
Collapse
|
10
|
Li J, Liang T, Hei A, Wang X, Li H, Yu X, Zhao R, Gao P, Fang C, Zhou J, Li M, He E, Skog S. Novel neutralizing chicken IgY antibodies targeting 17 potent conserved peptides identified by SARS-CoV-2 proteome microarray, and future prospects. Front Immunol 2022; 13:1074077. [PMID: 36618358 PMCID: PMC9815496 DOI: 10.3389/fimmu.2022.1074077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction An approach toward novel neutralizing IgY polyclonal antibodies (N-IgY-pAb) against SARS-CoV-2 S-ECD was developed. Material and methods The novel N-IgY-pAb and its intranasal spray response against the wild type ("'WH-Human 1") SARS-CoV-2 virus, variants of Delta or Omicron were up to 98%. Unique virus peptides binding to N-IgY-pAb were screened by a SARS-CoV-2 proteome microarray. Results Seventeen mutation-free peptides with a Z-score > 3.0 were identified as potent targets from a total of 966 peptides. The new findings show that one is in the RBM domain (461LKPFERDISTEIYQA475 ), two are in the NTD domain (21RTQLPPAYTNSFTRG35, 291CALDPLSETKCTLKS305) four are in the C1/2-terminal (561PFQQFGRDIADTTDA575,571DTTDAVRDPQTLEIL585,581TLEILDITPCSFGGV595, 661ECDIPIGAGICASYQ675 ), three are in the S1/S2 border (741YICGDSTECSNLLLQ755, 811KPSKRSFIEDLLFNK825, 821LLFNKVTLADAGFIK835) one target is in HR2 (1161SPDVDLGDISGINAS1175) and one is in HR2-TM (1201QELGKYEQYIKWPWY1215). Moreover, five potential peptides were in the NSP domain: nsp3-55 (1361SNEKQEILGTVSWNL1375), nsp14-50 (614HHANEYRLYLDAYNM642, ORF10-3 (21MNSRNYIAQVDVVNFNLT38, ORF7a-1(1MKIILFLALITLATC15) and ORF7a-12 (1116TLCFTLKRKTE121). Discussion and conclusion We concluded that the N-IgY-pAb could effectively neutralize the SARS-CoV-2. The new findings of seventeen potent conserved peptides are extremely important for developing new vaccines and "cocktails" of neutralizing Abs for efficient treatments for patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Jin Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Te Liang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Ailian Hei
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Xiangbin Wang
- SciProtech Co., Ltd, Beijing Changping Science Park, Beijing, China
| | - Huijun Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Centre, National Centre for Protein Sciences-Beijing (PHOENIX Centre), Beijing Institute of LifeOmics, Beijing, China
| | - Rui Zhao
- SciProtech Co., Ltd, Beijing Changping Science Park, Beijing, China
| | - Peng Gao
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Cong Fang
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Ji Zhou
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Maogang Li
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Ellen He
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China
| | - Sven Skog
- Department of Medicine, Shenzhen Ellen-Sven Precision Medicine Institute, Shenzhen, China,*Correspondence: Sven Skog,
| |
Collapse
|