1
|
Qin H, Chen Y, Cai Y, Liu H, Zhang J. Simulation of greenhouse gas emission during sewage-sludge composting with high-concentration oxygen aeration. ENVIRONMENTAL RESEARCH 2025; 276:121479. [PMID: 40147513 DOI: 10.1016/j.envres.2025.121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Continuous emission of greenhouse gases (CH4, N2O) is still one of key issues inhibiting the sustainability of the composting industry, which is regulated by aeration combined with porosity of the matrix via varying dissolved-oxygen (DO) distribution of in compost particles. Numerical simulation is considered to be an emerging tool for optimizing oxygen supply and porosity of the matrix. Therefore, in this study, a novel numerical simulation approach was developed, which includes a DO distribution model and fitting equations of GHG based on DO distribution. The parameters (porosity distribution, coefficients) were obtained from pilot experiments of sewage-sludge composting at aeration of two oxygen concentrations (20.9 %, OC20.9; 40.0 %, OC40.0) respectively. As a result, when the air-immobile region ranged from 0.2 to 0.5 and the O2 concentration was increased from 20.9 % (OC20.9) to 100.0 % (OC100.0), the CH4 emission rate decreased by a range of 53 %-96 %, while the N2O emission rate varied from a decrease of 7 % to an increase of 59 %. The developed simulation approach can be used to assist in establishing novel technologies to reduce GHGs emission in composting via optimizing oxygen supply combined with matrix's porosity.
Collapse
Affiliation(s)
- Haiguang Qin
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Yixiao Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Areas, Guilin University of Technology, Guilin 541004, China
| | - Yanpeng Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Areas, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
2
|
Zhao X, Chen Y, Hu J, Wang H, Ye Z, Zhang J, Meng J, Li J, Dahlgren RA, Zhang S, Gao H, Chen Z. Efficacy of nitrate and biochar@birnessite composite microspheres for simultaneous suppression of As(III) mobilization and greenhouse gas emissions in flooded paddy soils. ENVIRONMENTAL RESEARCH 2025; 279:121757. [PMID: 40324616 DOI: 10.1016/j.envres.2025.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/24/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Elevated As(III) pollution and greenhouse gas (GHG) emissions are two primary environmental concerns associated with flooded paddy soils. Herein, a novel biochar@birnessite composite microsphere was engineered using a biochar, birnessite and sodium alginate formulation. The microspheres were applied along with nitrate to examine their efficacy in suppressing As(III) mobilization and GHG emissions in an As-contaminated flooded paddy soil. After a 10-day incubation period, the combined nitrate + microsphere treatment achieved desirable remediation effects versus a nitrate-alone treatment, with mobile As(III) (initially 0.1 mM in flooded layer) completely immobilized and N2O, CH4 and CO2 emissions declining by 89 %, 73 % and 31 %, respectively. As(III) immobilization was ascribed to oxidation/adsorption/coprecipitation by FeOx/MnOx regenerated from successive cycles of Feammox/Mnammox and nitrate-reduction coupled with Fe(II) oxidation (NRFO)/nitrate-reduction coupled with Mn(II) oxidation (NRMO). Moreover, NRFO/NRMO-derived full denitrification displayed high thermodynamic feasibility, leading to full denitrification with the generation of N2 rather than N2O. The co-occurrence of anaerobic oxidation of methane (AOM) driven by biochar-shuttling and coupled reduction of nitrate/FeOx/MnOx fostered anaerobic oxidation of CH4 to CO2. A portion of the resulting CO2 was incorporated into poorly-soluble carbonate minerals leading to lower CO2 emission and soil carbon sequestration. Metagenomic sequencing revealed that the nitrate + microsphere treatment enriched the abundances of key microorganisms linked to As/Fe/Mn oxidation and GHG mitigation (e.g., Geobacter, Streptomyces, Cupriavidus and Chloroflexus). Our findings document the efficacy of nitrate + biochar@birnessite microsphere treatment as an effective remediation strategy to simultaneously mitigate As(III) pollution and GHG emissions in flooded paddy soils.
Collapse
Affiliation(s)
- Xiyu Zhao
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yilin Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jiehua Hu
- Department of Marine Biology, Xiamen Ocean Vocational College, Xiamen, 361100, PR China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China
| | - Zilu Ye
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China; School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China
| | - Jun Meng
- Zhejiang Province Key Laboratory of Recycling and Ecological Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China
| | - Jiale Li
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Randy A Dahlgren
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China; Department of Land, Air & Water Resources, University of California, Davis, CA, 95616, USA
| | - Shuyun Zhang
- School of Medicine, Taizhou University, Taizhou, 318000, PR China
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Zheng Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
3
|
Yu Y, Wu J, Tang Z, Wan S, Hu J, Li B, Wang J, Li F. Unveiling the nitrogen metabolism mechanism for nitrogen retention in compost via in-situ ammonia recycling strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124863. [PMID: 40054356 DOI: 10.1016/j.jenvman.2025.124863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
A large amount of ammonia volatilization in compost causes environmental pollution and reduces the quality of compost. Ammonia recycling composting strategy (ARCS) is new strategy for reducing ammonia volatilization by absorbing with backfilling ammonia into the compost. This study revealed the mechanism of ARCS on ammonia volatilization and nitrogen retention during chicken manure composting. The results showed that the adsorption layer containing wood vinegar had an obvious inhibition effect on ammonia volatilization. Compared to CK, ARCS treatment could reduce ammonia emissions and nitrogen loss by 20.65% and 39.6% with T3 (12d), respectively. Different adsorption time would affect the occurrence of various nitrogen components in the adsorption layer, especially the change of inorganic nitrogen content. Metagenomic analysis showed that ARCS treatment resulted in significant changes in bacterial communities, and different backfilling times had significant effects on nitrogen metabolism pathways in compost. Glutamate dehydrogenase and glutamate synthase were the key nitrogen metabolism processes during composting, which played an important role in ammonia volatilization and nitrogen retention. The suitable backfilling time (12d) promoted the acceleration of ammonia nitrogen metabolism in the early stage of composting and enhanced the ammonia assimilation and dissimilatory nitrate reduction function in the maturation stage to achieve nitrogen retention. This study provided valuable insights into the effects of in-situ ammonia absorption and backfilling on nitrogen metabolism pathways during composting.
Collapse
Affiliation(s)
- Ying Yu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Ji Wu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Shuixia Wan
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Jiankun Hu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Boyu Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Jing Wang
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China
| | - Fan Li
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences/Anhui Provincial Key Laboratory of Nutrient Cycling, Resources & Environment, Hefei, 230031, Anhui, China.
| |
Collapse
|
4
|
Feng Y, Sun H, Chen S, Xie W, Jin H, Feng Y, Poinern GEJ, Xue L. Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137021. [PMID: 39764962 DOI: 10.1016/j.jhazmat.2024.137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 03/12/2025]
Abstract
The losses of reactive gaseous nitrogen (N), including ammonia (NH3) and nitrous oxide (N2O), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH3 and N2O fluxes, compost properties and bacterial communities. Results showed that high application of HAP significantly decreased compost cumulative NH3 volatilization by 23-26 % compared to the control and MHAP. Compost NH3 and N2O emissions were significantly influenced by compost temperature and inorganic N concentrations. Moreover, HAP and MHAP at high rates reduced the relative abundance of Bacteroidota (5-29 %) and Proteobacteria (11-35 %), compared to those at low rates. Compost environmental factors and bacterial diversity were identified as dominant factors affecting gaseous N emissions, with 54 % and 25 % explanatory rates, respectively. Furthermore, high application rates of HAP are expected to reduce annual NH3 emissions from poultry manure compost by 40000 t. These findings provide insights into rational resource utilization of HAP and gaseous N emission reduction from composting.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Murdoch Applied Innovation Nanotechnology Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Sen Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Gerrard Eddy Jai Poinern
- Murdoch Applied Innovation Nanotechnology Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
5
|
Li K, Zhang L, Zhou F, Yang K, Zhan M, Su Y, Wu D, Xie B. Revealing mechanisms of NH 3 and N 2O emissions reduction in the rapid bio-drying of food waste: Insights from organic nitrogen composition and microbial activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173353. [PMID: 38795999 DOI: 10.1016/j.scitotenv.2024.173353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Inevitably, aerobic biological treatment processes generate emissions of ammonia (NH3) and greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O). The rapid bio-drying process (RBD) for food waste (FW) alleviates issues arising from its substantial growth. However, its emissions of NH3 and N2O remain unknown, and the correlation with nitrogen components in the substrate remains unclear, significantly impeding its widespread adoption. Here, the nitrogen loss and its mechanisms in RBD were investigated, and the results are as follows: The total emission of NH3 and N2O were1.42 and 1.16 mg/kg FW (fresh weight), respectively, achieving a 98 % reduction compared to prior studies. Structural equation modeling demonstrates that acid ammonium nitrogen (AN) decomposition chiefly generates NH3 in compost (p < 0.001). Strong correlation (p < 0.001) exists between amino acid nitrogen (AAN) and AN. In-depth analysis of microbial succession during the process reveals that the enrichment of Brevibacterium, Corynebacterium, Dietzia, Fastidiosipila, Lactobacillus, Mycobacterium, Peptoniphilus, and Truepera, are conducive to reducing the accumulation of AN and AAN in the substrate, minimizing NH3 emissions (p < 0.05). While Pseudomonas, Denitrobacterium, Nitrospira, and Bacillus are identified as key species contributing to N2O emissions during the process. Correlation analysis between physicochemical conditions and microbial succession in the system indicates that the moisture content and NO3- levels during the composting process provide suitable conditions for the growth of bacteria that contribute to NH3 and N2O emissions reduction, these enrichment in RBD process minimizing NH3 and N2O emissions. This study can offer crucial theoretical and data support for the resource utilization process of perishable organic solid waste, mitigating NH3 and GHGs emissions.
Collapse
Affiliation(s)
- Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China.
| | - Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China.
| | - Feng Zhou
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China.
| | - Kai Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Civil, Environmental & Architectural Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Yang S, Yin Y, Zhang W, Li H, Wang X, Chen R. Advances in understanding bioaerosol release characteristics and potential hazards during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171796. [PMID: 38513848 DOI: 10.1016/j.scitotenv.2024.171796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Bioaerosol emissions and their associated risks are attracting increasing attention. Bioaerosols are generated during the pretreatment, fermentation, and screening of mature compost when processing various types of solid waste at composting plants (e.g., municipal sludge and animal manure). In this review, we summarize research into bioaerosols at different types of composting plants by focusing on the methods used for sampling bioaerosols, stages when emissions potentially occur, major components of bioaerosols, survival and diffusion factors, and possible control strategies. The six-stage Andersen impactor is the main method used for sampling bioaerosols in composting plants. In addition, different composting management methods mainly affect bioaerosol emissions from composting plants. Studies of the components of bioaerosols produced by composting plants mainly focused on bacteria and fungi, whereas few considered others such as endotoxin. The survival and diffusion of bioaerosols are influenced by seasonal effects due to changes in environmental factors, such as temperature and relative humidity. Finally, three potential strategies have been proposed for controlling bioaerosols in composting plants. Improved policies are required for regulating bioaerosol emissions, as well as bioaerosol concentration diffusion models and measures to protect human health.
Collapse
Affiliation(s)
- Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07 Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
7
|
Xuehan F, Xiaojun G, Weiguo X, Ling Z. Effect of the addition of biochar and wood vinegar on the morphology of heavy metals in composts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118928-118941. [PMID: 37922076 DOI: 10.1007/s11356-023-30645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023]
Abstract
In the experiment, the morphology of heavy metals (Pb, Cr, Cd, and Ni, HMs) was characterized using flame atomic absorption spectroscopy. In addition, Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) were used to characterize the correlation between environmental factors and metal morphology in the rotting compost from several angles. The results showed that the humus treated with wood vinegar solution had a high degree of humification and rich aromatic structure. FTIR spectroscopy confirmed that the degree of humus aromatization gradually increased during the composting process, which enhanced the complexation of humus (HS) with HMs but had less effect on Ni. In addition, the optimum concentration of wood vinegar (WV) was determined to be 1.75%. The results of the study showed that in the Pb passivation treatment group, the proportion of soluble (Red) and exchangeable states (Exc) converted to oxidized (Oxi) and residual states (Res) was 8%, 14%, 6%, 1%, and 12% in the CK, T1, T2, T3, and T4 treatment groups, respectively; in the Cr passivation treatment group, the proportion of Cr-Red and Cr-Exc converted to oxidized and residual states was 31%, 33%, 25%, 29%, and 25%; in the Cd passivation treatment group, the proportions of Cd-Red and Cd-Exc converted to oxidized and residual states were 5%, 15%, 4%, 9%, and 11%, respectively; whereas the Ni treatment group did not show any significant passivation effect. The proportion of Pb-Oxi was relatively stable, Cr-Oxi was converted to Cr-Res, whereas Cd showed the conversion of Cd-Oxi to Cd-Exc. SUVA254 and SUVA280 showed significant positive correlations with Pb-Res, Cr-Res and Ni-Res, and significant positive correlations with moisture content (MC); whereas MC was significantly negatively correlated with each form of HMs. Total potassium (TK), total nitrogen (TN), and both carbon (TOC) were negatively correlated with Pb-Res and Pb-Exc. Structural equation modeling verified the relationship between environmental factors and HMs, and the composting results showed that the addition of biochar (BC) and a higher percentage of WV could increase compost decomposition and passivate HMs to improve its agronomic function.
Collapse
Affiliation(s)
- Fu Xuehan
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Guo Xiaojun
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Xu Weiguo
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China
| | - Zhou Ling
- College of Mechanical and Electrical Engineering, Tarim University, Arar, 843300, Xinjiang, China.
- Department of Education, Key Laboratory of Modern Agricultural Engineering in General Universities, Xinjiang Uygur Autonomous Region, Alar, 843300, Xinjiang, China.
| |
Collapse
|
8
|
Li M, Li S, Chen S, Meng Q, Wang Y, Yang W, Shi L, Ding F, Zhu J, Ma R, Guo X. Measures for Controlling Gaseous Emissions during Composting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3587. [PMID: 36834281 PMCID: PMC9964147 DOI: 10.3390/ijerph20043587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.
Collapse
Affiliation(s)
- Minghan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Shuyan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Shigeng Chen
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Qingyu Meng
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Yu Wang
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Wujie Yang
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Lianhui Shi
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Fangjun Ding
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Jun Zhu
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Ronghui Ma
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Xinsong Guo
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| |
Collapse
|