1
|
Sliti HA, Rasheed AI, Tripathi S, Jesso ST, Madathil SC. Incorporating machine learning and statistical methods to address maternal healthcare disparities in US: A systematic review. Int J Med Inform 2025; 200:105918. [PMID: 40245723 DOI: 10.1016/j.ijmedinf.2025.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Maternal health disparities are recognized as a significant public health challenge, with pronounced disparities evident across racial, socioeconomic, and geographic dimensions. Although healthcare technologies have advanced, these disparities remain primarily unaddressed, indicating that enhanced analytical approaches are needed. OBJECTIVES This review aims to evaluate the impact of machine learning (ML) and statistical methods on identifying and addressing maternal health disparities and to outline future research directions for enhancing these methodologies. METHODS Following the PRISMA guidelines, the review of studies employing ML and statistical methods to analyze maternal health disparities within the United States was conducted. Publications between January 1, 2012, and February 2024 were systematically searched through PubMed, Web of Science, and ScienceDirect. Inclusion criteria targeted studies conducted within the U.S., peer-reviewed articles published during the period, research covering the postpartum period up to one year post-delivery, and studies incorporating both maternal and infant health data with a focus primarily on maternal outcomes. RESULTS A total of 147 studies met the inclusion criteria for this analysis. Among these, 129 (88 %) utilized statistical methods in health sciences to analyze correlations, treatment effects, and public health initiatives, thus providing vital, actionable insights for policy and clinical decisions. Meanwhile, 18 articles (12 %) applied ML techniques to explore complex, nonlinear relationships in data. The findings indicate that while ML and statistical methods offer valuable insights into the factors contributing to health disparities, there are limitations regarding dataset diversity and methodological precision. Most studies concentrate on racial and socioeconomic inequalities, with fewer addressing the geographical aspects of maternal health. This review emphasizes the necessity for broader dataset utilization and methodology improvements to enhance the findings' predictive accuracy and applicability. CONCLUSIONS ML and statistical methods show great potential to transform maternal healthcare by identifying and addressing disparities. Future research should focus on broadening dataset diversity, improving methodological precision, and enhancing interdisciplinary efforts.
Collapse
Affiliation(s)
- Hala Al Sliti
- School of Systems Science and Industrial Engineering, Watson College of Engineering and Applied Science, SUNY Binghamton, Vestal, NY, United States.
| | - Ashaar Ismail Rasheed
- School of Systems Science and Industrial Engineering, Watson College of Engineering and Applied Science, SUNY Binghamton, Vestal, NY, United States
| | - Saumya Tripathi
- Department of Social Work, SUNY Binghamton, 67 Washington St Binghamton, NY 13902, United States
| | - Stephanie Tulk Jesso
- School of Systems Science and Industrial Engineering, Watson College of Engineering and Applied Science, SUNY Binghamton, Vestal, NY, United States
| | - Sreenath Chalil Madathil
- School of Systems Science and Industrial Engineering, Watson College of Engineering and Applied Science, SUNY Binghamton, Vestal, NY, United States
| |
Collapse
|
2
|
Christensen GM, Marcus M, Vanker A, Eick SM, Malcolm-Smith S, Suglia SF, Chang HH, Zar HJ, Stein DJ, Hüls A. Joint effects of indoor air pollution and maternal psychosocial factors during pregnancy on trajectories of early childhood psychopathology. Am J Epidemiol 2024; 193:1352-1361. [PMID: 38634620 PMCID: PMC11458196 DOI: 10.1093/aje/kwae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Prenatal indoor air pollution and maternal psychosocial factors have been associated with adverse psychopathology. We used environmental-exposure mixture methodology to investigate joint effects of both exposure classes on child behavior trajectories. For 360 children from the South African Drakenstein Child Health Study, we created trajectories of Child Behavior Checklist scores (at 24, 42, and 60 months) using latent-class linear mixed effects models. Indoor air pollutants and psychosocial factors were measured during pregnancy (second trimester). After adjusting for confounding, single-exposure effects (per natural log-1 unit increase) were assessed using polytomous logistic regression models, joint effects using self-organizing maps, and principal component analysis. Three trajectories were chosen for both internalizing and externalizing problems, with "high" (externalizing) or "increasing" (internalizing) being the most adverse trajectories. High externalizing trajectory was associated with increased exposure to particulate matter of ≤ 10 microns in diameter (PM10) (odds ratio [OR] = 1.25; 95% CI, 1.01-1.55) and self-organizing maps exposure profile most associated with smoking (OR = 2.67; 95% CI, 1.14-6.27). Medium internalizing trajectory was associated with increased emotional intimate partner violence (OR = 2.66; 95% CI, 1.17-5.57), increasing trajectory with increased benzene (OR = 1.24; 95% CI, 1.02-1.51) and toluene (1.21; 95% CI, 1.02-1.44) and the principal component most correlated with benzene and toluene (OR = 1.25; 95% CI, 1.02-1.54). Prenatal exposure to environmental pollutants and psychosocial factors was associated with internalizing and externalizing child behavior trajectories. Understanding joint effects of adverse exposure mixtures will facilitate targeted interventions to prevent childhood psychopathology. This article is part of a Special Collection on Mental Health.
Collapse
Affiliation(s)
- Grace M Christensen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Aneesa Vanker
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town 7700, South Africa
| | - Stephanie M Eick
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Susan Malcolm-Smith
- Neuroscience Institute, University of Cape Town, Cape Town 7700, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town 7925, South Africa
| | - Shakira F Suglia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Howard H Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town 7700, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town 7700, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town 7700, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town 7925, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town 7700, South Africa
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
3
|
Pan S, Li Z, Rubbo B, Quon-Chow V, Chen JC, Baumert BO, Garcia E, Aung MT, Conti DV, Chatzi L. Applications of mixture methods in epidemiological studies investigating the health impact of persistent organic pollutants exposures: a scoping review. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00717-3. [PMID: 39256588 PMCID: PMC11891089 DOI: 10.1038/s41370-024-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Persistent organic pollutants (POPs) are environmental chemicals characterized by long half-lives in nature and human bodies, posing significant health risks. The concept of the exposome, encompassing all lifetime environmental exposures, underscores the importance of studying POP as mixtures rather than in isolation. The increasing body of evidence on the health impacts of POP mixtures necessitates the proper application of statistical methods. OBJECTIVES We aimed to summarize studies on the overall effects of POP mixtures, identify patterns in applications of mixture methods-statistical methods for investigating the association of mixtures-and highlight current challenges in synthesizing epidemiologic evidence of POP mixtures on health effects as illustrated through a case study. METHODS We conducted a systematic literature search on PubMed and Embase for epidemiological studies published between January 2011 and April 2023. RESULTS We included 240 studies that met our eligibility criteria. 126 studies focused on per- and polyfluoroalkyl substances (PFAS) mixtures only, while 40 analyzed three or more classes of POPs in mixture analyses. We identified 23 unique mixture methods used to estimate the overall effects of POP mixtures, with Bayesian Kernel Machine Regression (BKMR), a type of response-surface modeling, being the most common. Additionally, 22.9% of studies used a combination of methods, including response-surface modeling, index modeling, dimension reduction, and latent variable models. The most extensively explored health outcome category was body weight and birth sizes (n = 43), and neurological outcomes (n = 41). In the case study of PFAS mixtures and birth weight, 12 studies showed negative associations, while 4 showed null results, and 2 showed positive associations. IMPACT STATEMENT This scoping review consolidates the existing literature on the overall effects of POP mixtures using statistical methods. By providing a comprehensive overview, our study illuminates the present landscape of knowledge in this field and underscores the methodological hurdles prevalent in epidemiological studies focused on POP mixtures. Through this analysis, we aim to steer future research directions, fostering a more nuanced comprehension of the intricate dynamics involved in assessing the health effects of POP mixtures. Our work stands as a significant contribution to the ongoing exploration of the chemical exposome.
Collapse
Affiliation(s)
- Shudi Pan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA.
| | - Zhenjiang Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
| | - Bruna Rubbo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
| | - Victoria Quon-Chow
- Department of Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiawen Carmen Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
| | - Brittney O Baumert
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern, California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Carlin DJ, Rider CV. Combined Exposures and Mixtures Research: An Enduring NIEHS Priority. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:75001. [PMID: 38968090 PMCID: PMC11225971 DOI: 10.1289/ehp14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The National Institute of Environmental Health Sciences (NIEHS) continues to prioritize research to better understand the health effects resulting from exposure to mixtures of chemical and nonchemical stressors. Mixtures research activities over the last decade were informed by expert input during the development and deliberations of the 2011 NIEHS Workshop "Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health Effects." NIEHS mixtures research efforts since then have focused on key themes including a) prioritizing mixtures for study, b) translating mixtures data from in vitro and in vivo studies, c) developing cross-disciplinary collaborations, d) informing component-based and whole-mixture assessment approaches, e) developing sufficient similarity methods to compare across complex mixtures, f) using systems-based approaches to evaluate mixtures, and g) focusing on management and integration of mixtures-related data. OBJECTIVES We aimed to describe NIEHS driven research on mixtures and combined exposures over the last decade and present areas for future attention. RESULTS Intramural and extramural mixtures research projects have incorporated a diverse array of chemicals (e.g., polycyclic aromatic hydrocarbons, botanicals, personal care products, wildfire emissions) and nonchemical stressors (e.g., socioeconomic factors, social adversity) and have focused on many diseases (e.g., breast cancer, atherosclerosis, immune disruption). We have made significant progress in certain areas, such as developing statistical methods for evaluating multiple chemical associations in epidemiology and building translational mixtures projects that include both in vitro and in vivo models. DISCUSSION Moving forward, additional work is needed to improve mixtures data integration, elucidate interactions between chemical and nonchemical stressors, and resolve the geospatial and temporal nature of mixture exposures. Continued mixtures research will be critical to informing cumulative impact assessments and addressing complex challenges, such as environmental justice and climate change. https://doi.org/10.1289/EHP14340.
Collapse
Affiliation(s)
- Danielle J. Carlin
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Schildroth S, Claus Henn B, Vines AI, Geller RJ, Lovett SM, Coleman CM, Bethea TN, Botelho JC, Calafat AM, Milando C, Baird DD, Wegienka G, Wise LA. Per- and polyfluoroalkyl substances (PFAS), perceived stress, and depressive symptoms in a prospective cohort study of black women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172445. [PMID: 38642767 PMCID: PMC11109747 DOI: 10.1016/j.scitotenv.2024.172445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are endocrine-disrupting chemicals with neurotoxic properties. PFAS have been associated with depressive symptoms among women in some studies, but little research has evaluated the effects of PFAS mixtures. Further, no study has investigated interactions of PFAS-depression associations by perceived stress, which has been shown to modify the effects of PFAS on other health outcomes. OBJECTIVE In a prospective cohort study of reproductive-aged Black women, we investigated associations between PFAS and depressive symptoms and the extent to which perceived stress modified these associations. METHODS We analyzed data from 1499 participants (23-35 years) in the Study of Environment, Lifestyle, and Fibroids. We quantified concentrations of nine PFAS in baseline plasma samples using online solid-phase extraction-liquid chromatography-isotope dilution tandem mass spectrometry. Participants reported perceived stress via the Perceived Stress Scale (PSS-4; range = 0-16) at baseline and depressive symptoms via the Center for Epidemiologic Studies Depression Scale (CESD; range = 0-44) at the 20-month follow-up visit. We used Bayesian Kernel Machine Regression to estimate associations between PFAS concentrations, individually and as a mixture, and depressive symptoms, and to assess effect modification by PSS-4 scores, adjusting for confounders. RESULTS Baseline perfluorodecanoic acid concentrations were associated with greater depressive symptoms at the 20-month follow-up, but associations for other PFAS were null. The PFAS were not associated with depressive symptoms when evaluated as a mixture. The association between the 90th percentile (vs. 50th percentile) of the PFAS mixture with CES-D scores was null at the 10th (β = 0.03; 95 % CrI = 0.20, 0.25), 50th (β = 0.02; 95 % CrI = -0.16, 0.19), and 90th (β = 0.01; 95 % CrI = 0.18, 0.20) percentiles of PSS-4 scores, suggesting perceived stress did not modify the PFAS mixture. CONCLUSION In this prospective cohort study, PFAS concentrations-assessed individually or as a mixture-were not appreciably associated with depressive symptoms, and there was no evidence of effect modification by perceived stress.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Anissa I Vines
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Ruth J Geller
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Sharonda M Lovett
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Chad M Coleman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Traci N Bethea
- Office of Minority Health & Health Disparities Research, Georgetown Lombardi Comprehensive Cancer Institute, Washington, DC, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chad Milando
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Donna D Baird
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Burdette T, Yakimavets V, Panuwet P, Ryan PB, Barr DB, Salamova A. Per- and polyfluoroalkyl substances (PFAS) in senior care facilities and older adult residents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172316. [PMID: 38593875 PMCID: PMC11075449 DOI: 10.1016/j.scitotenv.2024.172316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic compounds used in a variety of consumer products and industrial applications that persist in the environment, bioaccumulate in biological tissues, and can have adverse effects on human health, especially in vulnerable populations. In this study, we focused on PFAS exposures in residents of senior care facilities. To investigate relationships between indoor, personal, and internal PFAS exposures, we analyzed 19 PFAS in matched samples of dust collected from the residents' bedrooms, and wristbands and serum collected from the residents. The median ∑PFAS concentrations (the sum of all PFAS detected in the samples) measured in dust, wristbands, and serum were 120 ng/g, 0.05 ng/g, and 4.0 ng/mL, respectively. The most abundant compounds in serum were linear- and branched-perfluorooctane sulfonic acid (L-PFOS and B-PFOS, respectively) at medians of 1.7 ng/mL and 0.83 ng/mL, respectively, followed by the linear perfluorooctanoic acid (L-PFOA) found at a median concentration of 0.59 ng/mL. Overall, these three PFAS comprised 80 % of the serum ∑PFAS concentrations. A similar pattern was observed in dust with L-PFOS and L-PFOA found as the most abundant PFAS (median concentrations of 13 and 7.8 ng/g, respectively), with the overall contribution of 50 % to the ∑PFAS concentration. Only L-PFOA was found in wristbands at a median concentration of 0.02 ng/g. Significant correlations were found between the concentrations of several PFAS in dust and serum, and in dust and wristbands, suggesting that the indoor environment could be a significant contributor to the personal and internal PFAS exposures in seniors. Our findings demonstrate that residents of assisted living facilities are widely exposed to PFAS, with several PFAS found in blood of each study participant and in the assisted living environment.
Collapse
Affiliation(s)
- Tret Burdette
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dana B Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Ayodele A, Obeng-Gyasi E. Exploring the Potential Link between PFAS Exposure and Endometrial Cancer: A Review of Environmental and Sociodemographic Factors. Cancers (Basel) 2024; 16:983. [PMID: 38473344 PMCID: PMC10931119 DOI: 10.3390/cancers16050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
This exploratory narrative review paper delves into the intricate interplay between per- and polyfluoroalkyl substances (PFAS) exposure, sociodemographic factors, and the influence of stressors in the context of endometrial cancer. PFAS, ubiquitous environmental contaminants notorious for their persistence in the ecosystem, have garnered attention for their potential to disrupt endocrine systems and provoke immune responses. We comprehensively examine the various sources of PFAS exposure, encompassing household items, water, air, and soil, thus shedding light on the multifaceted routes through which individuals encounter these compounds. Furthermore, we explore the influence of sociodemographic factors, such as income, education, occupation, ethnicity/race, and geographical location and their relationship to endometrial cancer risk. We also investigated the role of stress on PFAS exposure and endometrial cancer risk. The results revealed a significant impact of sociodemographic factors on both PFAS levels and endometrial cancer risk. Stress emerged as a notable contributing factor influencing PFAS exposure and the development of endometrial cancer, further emphasizing the importance of stress management practices for overall well-being. By synthesizing evidence from diverse fields, this review underscores the need for interdisciplinary research and targeted interventions to comprehensively address the complex relationship between PFAS, sociodemographic factors, stressors, and endometrial cancer.
Collapse
Affiliation(s)
- Aderonke Ayodele
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Emmanuel Obeng-Gyasi
- Department of Built Environment, North Carolina A&T State University, Greensboro, NC 27411, USA
- Environmental Health and Disease Laboratory, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
8
|
Zhang M, Rifas-Shiman SL, Aris IM, Fleisch AF, Lin PID, Nichols AR, Oken E, Hivert MF. Associations of Prenatal Per- and Polyfluoroalkyl Substance (PFAS) Exposures with Offspring Adiposity and Body Composition at 16-20 Years of Age: Project Viva. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127002. [PMID: 38054701 PMCID: PMC10699168 DOI: 10.1289/ehp12597] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Findings on the associations between prenatal PFAS exposures and offspring adiposity are inconsistent. Whether such associations may extend to adolescence is especially understudied. OBJECTIVES We investigated associations of prenatal PFAS exposures with offspring adiposity and body composition at 16-20 years of age. METHODS We studied 545 mother-child pairs in the prospective prebirth cohort Project Viva (Boston, Massachusetts). We measured six PFAS (PFOA, PFOS, PFNA, PFHxS, EtFOSAA, and MeFOSAA) in maternal early pregnancy (median age = 9.6 wk , range: 5.7-19.6 wk) plasma samples. At the late adolescence visit (median age = 17.4 y, range: 15.9-20.0 y), we obtained anthropometric measures and assessed body composition using bioelectrical impedance analysis and dual-energy X-ray absorptiometry. We examined associations of individual PFAS with obesity [i.e., age- and sex-specific body mass index (BMI) ≥ 95 th percentile] and adiposity and body composition using multivariable Poisson and linear regression models, respectively. We assessed PFAS mixture effects using Bayesian kernel machine regression (BKMR) and quantile g-computation. We used fractional-polynomial models to assess BMI trajectories (at 3-20 years of age) by prenatal PFAS levels. RESULTS Thirteen percent (n = 73 ) of the children had obesity in late adolescence. After multivariable adjustment, higher prenatal PFAS concentrations were associated with higher obesity risk [e.g., 1.59 (95% CI: 1.19, 2.12), 1.24 (95% CI: 0.98, 1.57), and 1.49 (95% CI: 1.11, 1.99) times the obesity risk per doubling of PFOS, PFOA, and PFNA, respectively]. BKMR showed an interaction between PFOA and PFOS, where the positive association between PFOS and obesity was stronger when PFOA levels were lower. Each quartile increment of the PFAS mixture was associated with 1.52 (95% CI: 1.03, 2.25) times the obesity risk and 0.52 (95% CI: - 0.02 , 1.06) kg / m 2 higher BMI. Children with higher prenatal PFOS, EtFOSAA, and MeFOSAA concentrations had higher rates of BMI increase starting from 9-11 years of age. DISCUSSION Prenatal PFAS exposures may have obesogenic effects into late adolescence. https://doi.org/10.1289/EHP12597.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Izzuddin M. Aris
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Abby F. Fleisch
- Center for Interdisciplinary Population Health Research, MaineHealth Institute for Research, Portland, Maine, USA
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, Maine, USA
| | - Pi-I Debby Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Amy R. Nichols
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Yim G, McGee G, Gallagher L, Baker E, Jackson BP, Calafat AM, Botelho JC, Gilbert-Diamond D, Karagas MR, Romano ME, Howe CG. Metals and per- and polyfluoroalkyl substances mixtures and birth outcomes in the New Hampshire Birth Cohort Study: Beyond single-class mixture approaches. CHEMOSPHERE 2023; 329:138644. [PMID: 37031836 PMCID: PMC10208216 DOI: 10.1016/j.chemosphere.2023.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
We aimed to investigate the joint, class-specific, and individual impacts of (i) PFAS, (ii) toxic metals and metalloids (referred to collectively as "metals"), and (iii) essential elements on birth outcomes in a prospective pregnancy cohort using both established and recent mixture modeling approaches. Participants included 537 mother-child pairs from the New Hampshire Birth Cohort Study. Concentrations of 6 metals and 5 PFAS were measured in maternal toenail clippings and plasma, respectively. Birth weight, birth length, and head circumference at birth were abstracted from medical records. Joint, index-wise, and individual associations of the metals and PFAS concentrations with birth outcomes were evaluated using Bayesian Kernel Machine Regression (BKMR) and Bayesian Multiple Index Models (BMIM). After controlling for potential confounders, the metals-PFAS mixture was associated with a larger head circumference at birth, which was driven by manganese. When using BKMR, the difference in the head circumference z-score when changing manganese from its 25th to 75th percentiles while holding all other mixture components at their medians was 0.22 standard deviations (95% posterior credible interval [CI]: -0.02, 0.46). When using BMIM, the posterior mean of index weight estimates assigned to manganese for head circumference z-score was 0.72 (95% CI: 0, 0.99). Prenatal exposure to the metals-PFAS mixture was not associated with birth weight or birth length by either BKMR or BMIM. Using both traditional and new mixture modeling approaches, prenatal exposure to manganese was associated with a larger head circumference at birth after accounting for exposure to PFAS and multiple toxic and essential metals.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Glen McGee
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Lisa Gallagher
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Emily Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth-Hitchcock Weight and Wellness Center, Department of Medicine at Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
10
|
Christensen GM, Marcus M, Vanker A, Eick SM, Malcolm-Smith S, Suglia SF, Chang HH, Zar HJ, Stein DJ, Hüls A. Joint Effects of Indoor Air Pollution and Maternal Psychosocial Factors During Pregnancy on Trajectories of Early Childhood Psychopathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288289. [PMID: 37066323 PMCID: PMC10104216 DOI: 10.1101/2023.04.07.23288289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Prenatal indoor air pollution and maternal psychosocial factors have been associated with adverse psychopathology. We used environmental exposure mixture methodology to investigate joint effects of both exposure classes on child behavior trajectories. Methods For 360 children from the South African Drakenstein Child Health Study, we created trajectories of Child Behavior Checklist scores (24, 42, 60 months) using latent class linear mixed effects models. Indoor air pollutants and psychosocial factors were measured during pregnancy (2 nd trimester). After adjusting for confounding, single-exposure effects (per natural log-1 unit increase) were assessed using polytomous logistic regression models; joint effects using self-organizing maps (SOM), and principal component (PC) analysis. Results High externalizing trajectory was associated with increased particulate matter (PM 10 ) exposure (OR [95%-CI]: 1.25 [1.01,1.55]) and SOM exposure profile most associated with smoking (2.67 [1.14,6.27]). Medium internalizing trajectory was associated with increased emotional intimate partner violence (2.66 [1.17,5.57]), increasing trajectory with increased benzene (1.24 [1.02,1.51]) and toluene (1.21 [1.02,1.44]) and the PC most correlated with benzene and toluene (1.25 [1.02, 1.54]). Conclusions Prenatal exposure to environmental pollutants and psychosocial factors was associated with internalizing and externalizing child behavior trajectories. Understanding joint effects of adverse exposure mixtures will facilitate targeted interventions to prevent childhood psychopathology.
Collapse
|
11
|
Aung MT, Eick SM, Padula AM, Smith S, Park JS, DeMicco E, Woodruff TJ, Morello-Frosch R. Maternal per- and poly-fluoroalkyl substances exposures associated with higher depressive symptom scores among immigrant women in the Chemicals in Our Bodies cohort in San Francisco. ENVIRONMENT INTERNATIONAL 2023; 172:107758. [PMID: 36682206 PMCID: PMC10840585 DOI: 10.1016/j.envint.2023.107758] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Exposure to per- and poly-fluoroalkyl substances (PFAS) remains an important public health issue due to widespread detection and persistence in environmental media, slow metabolism in humans, and influences on physiological processes such as neurological signaling. Maternal depression is highly prevalent during pregnancy and postpartum and is potentially sensitive to PFAS. The health risks associated with PFAS may be further amplified in historically marginalized communities, including immigrants. OBJECTIVE Evaluate maternal concentrations of PFAS in association with depression scores during pregnancy and whether effects differ between US born and immigrant women. METHODS Our study sample included 282 US born and 235 immigrant pregnant women enrolled in the Chemicals in Our Bodies prospective birth cohort based in San Francisco, CA. We measured 12 PFAS in serum samples collected in the second trimester and depressive symptom scores were assessed using the Center for Epidemiologic Studies Depression Scale. Associations were estimated using linear regression, adjusting for maternal age, education, pre-pregnancy body mass index, and parity. Associations with a PFAS mixture were estimated using quantile g-computation. RESULTS In adjusted linear regression models, a twofold increase in two PFAS was associated with higher depression scores in the overall sample, and this association persisted only among immigrant women (β [95 % confidence interval]: perfluorooctane sulfonic acid (2.7 [0.7-4.7]) and methyl-perfluorooctane sulfonamide acetic acid (2.9 [1.2-4.7]). Quantile g-computation indicated that simultaneously increasing all PFAS in the mixture by one quartile was associated with increased depressive symptoms among immigrant women (mean change per quartile increase = 1.12 [0.002, 2.3]), and associations were stronger compared to US born women (mean change per quartile increase = 0.09 [-1.0, 0.8]). CONCLUSIONS Findings provide new evidence that PFAS are associated with higher depression symptoms among immigrant women during pregnancy. Results can inform efforts to address environmental factors that may affect depression among US immigrants.
Collapse
Affiliation(s)
- Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amy M Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - June-Soo Park
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - Erin DeMicco
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|