1
|
Wu H, Zhou J, Zhang S, Gao Y, Wang C, Cong H, Feng S. Contributions of the bacterial communities to the microcystin degradation and nutrient transformations during aerobic composting of algal sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122559. [PMID: 39340886 DOI: 10.1016/j.jenvman.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Aerobic composting is a useful method for managing and disposing of salvaged algal sludge. To optimize the composting process and improve compost quality, it is necessary to understand the functions and responses of microbial communities therein. This work studied the degradation process of organic matter and the assemblage of bacterial communities in algal sludge composting via 16S rRNA amplicon sequencing. The results showed that 77.08% of the microcystin was degraded during the thermophilic stage of composting, which was the main period for microcystin degradation. Bacterial community composition and diversity changed significantly during the composting, and gradually stabilized as the compost matured. Different composting stages may be dominated by different module groups separately, as shown in the co-occurrence networks of composting bacterial communities. In the networks, all bacteria associated with microcystin degradation were identified as connectors between different module groups. The algal sludge composting process was driven primarily by deterministic processes, and the main driving forces for bacterial community assembly were temperature, dissolved organic carbon, ammonium, and microcystin. At last, by applying the structural equation modeling method, the bacterial communities under influences of physiochemical properties were proved as the main mediators for the microcystin degradation. This study provides valuable insights into the optimization of bacterial communities in composting to improve the efficiency of microcystin degradation and the quality of the compost product.
Collapse
Affiliation(s)
- Hainan Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Jiahui Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Sen Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Yu Gao
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan, 430010, PR China
| | - Chengkai Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Haibing Cong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China.
| | - Shaoyuan Feng
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
2
|
Zhang C, Li Y, Yu Z, Liu Y, Dong L. Effectiveness of biological drying for citric acid dewatered sludge: Evaluating the impact of energy-efficient ventilation strategies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:237-249. [PMID: 38677141 DOI: 10.1016/j.wasman.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/30/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The effectiveness of dehydration and utilization processes for citric acid dewatered sludge is hampered by its high concentrations of polysaccharides, proteins, and water-binding properties of microbial extracellular polymers (EPS). This research explores the efficacy and mechanisms involved in extracting water from this type of sludge using biological drying technology, with varying rates of ventilation. Especially pertinent was the use of low ventilation rates as control variables. Our results suggest that a scheduled intermittent ventilation at lower rates allows for the most efficient removal of water, achieving a rate of 41.71 % within eight days, according to the zero-order kinetic model. Remarkably, the peak temperature registered was 60 °C, reaching this threshold in just 0.1 days and maintaining high temperatures for approximately 5.9 days. Component analysis of organic matter illustrated a preferential degradation process for lipids under these ventilation conditions which is pivotal for releasing and transforming bound water for efficient extraction, as well as facilitating the breakdown of easily hydrolysable materials. Further, polysaccharide/protein (EPS) decomposition contributed to water removal, though less significantly. The periodic ventilation strategy allowed for the maximum cumulative temperature to be sustained, demonstrating superior efficiency in harnessing bio-generated heat (82.77 % for water evaporation), resulting in dry sludge suitable for self-sustained combustion at relatively low cost ($26.61/t). Highlighted by this study is the considerable potential of energy-efficient ventilation methods in the biological drying treatment of citric acid fermented sludge and similar industrial waste materials.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing, China
| | - YangYang Li
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - ZhanQiu Yu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing, China
| | - YanFeng Liu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing, China
| | - LiMing Dong
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing, China.
| |
Collapse
|
3
|
Yu B, Fu L, Chen T, Zheng G, Yang J, Cheng Y, Liu Y, Huang X. Environmental impacts of cement kiln co-incineration sewage sludge biodried products in a scale-up trial. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:24-33. [PMID: 38290345 DOI: 10.1016/j.wasman.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
The biodrying technology as a pretreatment technology can overcome the limitations of cement kilns co-incineration sewage sludge (SS) on energy consumption. But the impact of SS biodried products on cement kilns and the route carbon reduction potential of biodrying + cement kilns have not been studied. In this study, SS biodrying and cement kiln co-incineration biodried product trials were conducted to highlight the matrix combustion characteristics, and the impact of biodried products on cement kilns (clinker capacity, coal consumption, and pollutant discharge). The carbon emissions of the four scenarios were assessed based on these results. The results showed that water removal rate reached 65.5 % after 11-day biodrying, and the wet-based lower heating value of the biodried product increased by 76.0 % compared with the initial matrix. Comprehensive combustibility index of the biodried product (0.745 × 10-7 %2℃-3min-2) was better than that of SS (0.433 × 10-7 %2℃-3min-2) although a portion of the organic matter was degraded. Cement kiln co-incineration of biodried products (150 t/d) resulted in per tonne of clinker saved 5.61 kg of coal due to the heat utilization efficiency of biodried products reached to 93.7 %. However, it led to an increase in the emission concentrations of NOX and SO2. Assessment results indicated that the biodrying + cement kiln pathway reduced CO2 emissions by 385.7 kg/t SS. Biodried products have greater potential to reduce emissions as alternative fuels than as fertilizers. This study indicated the advantages of SS biodrying + cement kiln co-incineration route.
Collapse
Affiliation(s)
- Bao Yu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Lili Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Cheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| |
Collapse
|
4
|
Wang Y, Li L, Ma J, Han Y. The response and factors of microbial aerosol emission from the sludge bio-drying process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:294-304. [PMID: 38237405 DOI: 10.1016/j.wasman.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/29/2024]
Abstract
Exposure to high levels of microbial contaminants during waste disposal leads to the development of various diseases, including respiratory symptoms and gastrointestinal infections. In this study, the emissions of airborne bacteria and fungi during the process of sludge bio-drying were investigated. The recorded emission levels of airborne bacteria and fungi were 2398 ± 1307 CFU/m3 and 1963 ± 468 CFU/m3, respectively. Viable bacteria were sized between 1.1 and 3.3 μm, while fungal particles were concentrated between 2.1 and 4.7 μm. High-throughput sequencing was used to conduct a microbial population assay, and correlation analysis was performed to estimate the relationship between key factors and bioaerosol emissions. The main bacteria identified were Bacillus sp., Lysinibacillus sp. YS11, unclassified Enterobacteriaceae, Brevundimonas olei, and Achromobacter sp.; the primary types of fungi were Aspergillus ochraceus, Gibberella intricans, Fusarium concentricum, Aspergillus qinqixianii, and Alternaria sp.; and the dominant opportunistic pathogens were Bacillus anthracis and Aspergillus ochraceus. At lower moisture and temperature levels, airborne bacterial concentrations were higher, especially the release of fine particles. In addition, moisture content had a significant impact on the microbial population in bioaerosols. This study provides insights into strategies for controlling bioaerosols in the exhaust gases of the sludge bio-drying process.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhang Z, Jin B, Zhang Y, Huang Z, Li C, Tan M, Huang J, Lei T, Qi Y, Li H. The synergistic regulation of sewage sludge biodrying and greenhouse gas reduction by additives. BIORESOURCE TECHNOLOGY 2024; 394:130180. [PMID: 38086457 DOI: 10.1016/j.biortech.2023.130180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
As a dewatering method of high moisture solid waste sludge, biodrying still faces environmental problems such as material loss and greenhouse gas emission in the process of treatment. In this study, biochar and magnesium chloride were used to explore the synergistic effect of enhancing sludge biodrying and reducing greenhouse gas emissions. The highest temperature of biodrying was raised to 68.2 °C within 3 days, extending the longest high-temperature period to 5 days, which reduced the water content to 28.8 % in the single addition of biochar treatment. The complex addition increased the NH4+-N content of materials by 57.49 % and decreased the NO3--N content of materials by 40.62 %. The use of additives significantly reduced the emissions of CO2, CH4, and N2O compared to the no-addition treatment. The increase in dominant Actinomycetes and Chloroflexibacter was the main reason for the reduction in gas emissions.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Baicheng Jin
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Mengjiao Tan
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Tingzhou Lei
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Youxiang Qi
- Zhilan Ecological Environment Construction Co., Ltd, 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|